Biodegradation of a monoazo dye - Acid Orange 7 (AO7) was investigated by using an internal circulation baffled biofilm reactor. For accelerating AO7 biodegradation, endogenous electron donors produced from AO7 by UV photolysis were added into the reactor. The result shows that AO7 removal rate can be accelerated by using its endogenous electron donors, such as sulfanilic and aniline. When initial AO7 concentration was 13.6mg/L, electron donors generated by 8h UV photolysis were added into the same system. The biodegradation rate 0.4mgh was enhanced 60% than that without adding electron donor. Furthermore, sulfanilic and aniline were found to be the main endogenous electron carriers, which could accelerate the steps of the azo dye biodegradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2016.11.052DOI Listing

Publication Analysis

Top Keywords

endogenous electron
16
electron donors
16
biodegradation monoazo
8
monoazo dye
8
dye acid
8
acid orange
8
sulfanilic aniline
8
electron
6
ao7
5
accelerating biodegradation
4

Similar Publications

Molecular basis for the stepwise and faithful maturation of the 20 proteasome.

Sci Adv

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.

The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20 proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive.

View Article and Find Full Text PDF

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

The objective of this study was to investigate the effect of β-glucan on the pasting, gelling, rheological properties, and multi-level structures of the highland barley (HB) starch after dynamic high pressure microfluidization (DHPM) treatment, exploring the inhibition mechanisms of starch retrogradation by endogenous β-glucan after DHPM. DHPM treatment led to a decrease in the viscosity (K values from 161.1 to 54.

View Article and Find Full Text PDF

The role of spin diffusion in endogenous metal ions DNP.

J Chem Phys

January 2025

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.

The sensitivity of solid state nuclear magnetic resonance spectroscopy can be enhanced via dynamic nuclear polarization (DNP) using unpaired electrons as polarizing agents. In metal ions based (MI)-DNP, paramagnetic metal ions are introduced as dopants into inorganic materials serving as endogenous polarizing agents. Having polarizing agents as part of the structure enables signal enhancements within the bulk of the material.

View Article and Find Full Text PDF

Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!