Biochar application to agricultural land has been proposed as a means for improving phosphorus (P) availability in soil. The purpose of the current study was to understand how pyrolysis temperature affects P speciation in biochar and how this affects availability of P in the amended soil. Biochar was produced at different temperatures from digestate solids. The primary species of P in digestate solids were simple calcium phosphates. However, a high co-occurrence of magnesium (Mg) and P, indicated that struvite or other magnesium phosphates may also be important species. At low temperatures, pyrolysis had little effect on P speciation; however, as the temperature increased above 600 °C, the P gradually became more thermodynamically stable in species such as apatite. At very high temperatures above 1000 °C, there were indications of reduced forms of P. Biochar production decreased the immediate availability of P in comparison with the original digestate solids. However, for biochar produced at low temperatures, availability quickly increased to the same levels as in the digestate solids. For biochar produced at higher temperatures, availability remained depressed for much longer. The low availability of P in the biochar produced at high temperatures can probably be explained by the formation of less soluble P species in the biochar. In contrast, the transient decrease of availability of the P in the biochar produced at low temperatures can be explained by mechanisms, such as sorption on biochar, which gradually decreases because of oxidation of the biochar surfaces or changes in pH around the biochar particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2016.11.058 | DOI Listing |
Environ Pollut
January 2025
Department of Plant and Environmental Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Electronic address:
Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.
View Article and Find Full Text PDFSci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFMolecules
December 2024
Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
Int J Biol Macromol
January 2025
School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China. Electronic address:
Rational design of carbon material structures is essential for enhancing the performance of persulfate-based advanced oxidation processes (PS-AOPs) in water purification. In this study, a self-doping and self-templating strategy was devised to produce N, S co-doped biochar catalysts through pre-cryocrushing and carbonization procedures employing chitosan (N-source) and lignosulfonate (S-source) derived from biomass waste. The as-synthesized materials exhibited excellent performance in removing tetracycline (TC) through a synergistic process of adsorption and catalytic activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!