The structural, magnetic and electronic properties of 2D VX (X = S, Se) monolayers and graphene/VX heterostructures were studied using a DFT+U approach. It was found that the stability of the 1T phases of VX monolayers is linked to strong electron correlation effects. The study of vertical junctions comprising of graphene and VX monolayers demonstrated that interlayer interactions lead to the formation of strong spin polarization of both graphene and VX fragments while preserving the linear dispersion of graphene-originated bands. It was found that the insertion of Mo atoms between the layers leads to n-doping of graphene with a selective transformation of graphene bands keeping the spin-down Dirac cone intact.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp06732hDOI Listing

Publication Analysis

Top Keywords

graphene/vx heterostructures
8
electronic structure
4
structure spin
4
spin states
4
states graphene/vx
4
heterostructures structural
4
structural magnetic
4
magnetic electronic
4
electronic properties
4
properties monolayers
4

Similar Publications

The structural, magnetic and electronic properties of 2D VX (X = S, Se) monolayers and graphene/VX heterostructures were studied using a DFT+U approach. It was found that the stability of the 1T phases of VX monolayers is linked to strong electron correlation effects. The study of vertical junctions comprising of graphene and VX monolayers demonstrated that interlayer interactions lead to the formation of strong spin polarization of both graphene and VX fragments while preserving the linear dispersion of graphene-originated bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!