Structural insights into the interaction of the ribosomal P stalk protein P2 with a type II ribosome-inactivating protein ricin.

Sci Rep

Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Networks, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.

Published: November 2016

Ricin is a type II ribosome-inactivating protein (RIP) that depurinates A at the sarcin-ricin loop of 28 S ribosomal RNA (rRNA), thus inactivating the ribosome by preventing elongation factors from binding to the GTPase activation centre. Recent studies have disclosed that the conserved C-terminal domain (CTD) of eukaryotic ribosomal P stalk proteins is involved in the process that RIPs target ribosome. However, the details of the molecular interaction between ricin and P stalk proteins remain unknown. Here, we report the structure of ricin-A chain (RTA) in a complex with the CTD of the human ribosomal protein P2. The structure shows that the Phe, Leu and Phe residues of P2 insert into a hydrophobic pocket formed by the Tyr, Arg, Phe and Ile residues of RTA, while Asp of P2 forms hydrogen bonds with Arg of RTA. The key residues in RTA and P2 for complex formation were mutated, and their importance was determined by pull-down assays. The results from cell-free translation assays further confirmed that the interaction with P stalk proteins is essential for the inhibition of protein synthesis by RTA. Taken together, our results provide a structural basis that will improve our understanding of the process by which ricin targets the ribosome, which will benefit the development of effective small-molecule inhibitors for use as therapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122897PMC
http://dx.doi.org/10.1038/srep37803DOI Listing

Publication Analysis

Top Keywords

stalk proteins
12
ribosomal stalk
8
type ribosome-inactivating
8
ribosome-inactivating protein
8
rta complex
8
residues rta
8
protein
5
rta
5
structural insights
4
insights interaction
4

Similar Publications

Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.

View Article and Find Full Text PDF

KIF1C activates and extends dynein movement through the FHF cargo adapter.

Nat Struct Mol Biol

January 2025

Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.

Cellular cargos move bidirectionally on microtubules by recruiting opposite polarity motors dynein and kinesin. These motors show codependence, where one requires the activity of the other, although the mechanism is unknown. Here we show that kinesin-3 KIF1C acts as both an activator and a processivity factor for dynein, using in vitro reconstitutions of human proteins.

View Article and Find Full Text PDF

CCfrag: scanning folding potential of coiled-coil fragments with AlphaFold.

Bioinform Adv

December 2024

Department of Protein Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany.

Motivation: Coiled coils are a widespread structural motif consisting of multiple α-helices that wind around a central axis to bury their hydrophobic core. While AlphaFold has emerged as an effective coiled-coil modeling tool, capable of accurately predicting changes in periodicity and core geometry along coiled-coil stalks, it is not without limitations, such as the generation of spuriously bent models and the inability to effectively model globally non-canonical-coiled coils. To overcome these limitations, we investigated whether dividing full-length sequences into fragments would result in better models.

View Article and Find Full Text PDF

Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.

Cell Tissue Res

December 2024

Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site.

View Article and Find Full Text PDF

Light Harvesting Complex II Resists Non-bilayer Lipid-Induced Polymorphism in Plant Thylakoid Membranes via Lipid Redistribution.

J Phys Chem Lett

December 2024

Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.

The plant thylakoid membrane hosting the light-harvesting complex (LHCII) is the site of oxygenic photosynthesis. Contrary to the earlier consensus of a protein-driven single lamellar phase of the thylakoid, despite containing 40% non-bilayer-forming lipids, recent experiments confirm the polymorphic state of the functional thylakoid. What, then, is the origin of this polymorphism and what factors control it? The current Letter addresses the question using a total of 617.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!