High levels of immunoglobulin A (IgA)-coated bacteria may have a role in driving inflammatory bowel disease (IBD). We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL)-10 mice. At 8 weeks of age, mice were allocated into three groups ( = 4/group): normal (C57BL/6), IL-10, and IL-10 treated with sodium butyrate (100 mM). Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA) concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF)-α and IL-6 in IL-10 mice compared with those without treatment. At the phylum level, a reduction in and an increase in in IL-10 mice treated with sodium butyrate were observed. Additionally, species were reduced in IL-10 mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10 mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10 mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5188405PMC
http://dx.doi.org/10.3390/nu8120728DOI Listing

Publication Analysis

Top Keywords

sodium butyrate
32
il-10 mice
24
iga-coated bacteria
16
treated sodium
16
compared treatment
12
mice treated
12
il-10
9
sodium
8
mice
8
butyrate compared
8

Similar Publications

Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.

View Article and Find Full Text PDF

Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Anesthesia, Critical Care & Pain Medicine, Boston, MA, USA.

Background: Spouses of Alzheimer's disease (AD) patients are at a higher risk of developing incidental dementia. However, the causes and underlying mechanism of this clinical observation remain largely unknown. One possible explanation is linked to microbiota dysbiosis, a condition that has been associated with AD.

View Article and Find Full Text PDF

Background: Our research group is currently exploring the potential of Butyric acid (NaB), a Short Chain Fatty Acid (SCFA), as a novel therapeutic agent for Alzheimer's disease (AD).

Methods: In our investigation using the 5xFAD mouse model of AD, we observed that NaB had significant effects on Aβ levels, as well as on associative learning and cognitive functioning. Notably, we recorded a 40% reduction in brain Aβ and a 25% increase in fear response during both cued and contextual testing.

View Article and Find Full Text PDF

Chinese Hamster Ovary (CHO) cells are essential in biopharmaceutical manufacturing. Scientists use CRISPR to enhance productivity. mRNAs contain UTRs that regulate gene expression, affecting protein abundance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!