Bifunctional electrocatalysts for oxygen evolution/reduction reaction (OER/ORR) are desirable for the development of energy conversion technologies. It is discovered that the manganese quadruple perovskites CaMn O and LaMn O show bifunctional catalysis in the OER/ORR. A possible origin of the high OER activity is the unique surface structure through corner-shared planar MnO and octahedral MnO units to promote direct OO bond formations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201603004 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
The rational design and synthesis of bifunctionally active and durable oxygen electrocatalysts have garnered significant attention for electrochemical energy conversion and storage. Intermetallic nanostructures are particularly promising for these applications due to their unique catalytic properties and exceptional durability. In this study, we present a fascinating synthetic approach for the direct synthesis of a bifunctional oxygen electrocatalyst based on nitrogen-doped carbon-encapsulated ordered PdFe (o-PdFe@NC) intermetallic, using a cyano-bridged bimetallic single-source precursor tailored for aqueous rechargeable zinc-air batteries (ZABs).
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China.
The dual-site electrocatalysts formed by metal single atoms combines with metal nanoparticles represent a promising strategy to enhance both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, defect engineering is applied to dual-site ORR and OER electrocatalysts. Its design, synthesis, structural properties, and catalytic performance experimentally and theoretically are insightfully studied for the single-atomic Fe─N and the adjacent FeCo nanoalloy (FeCo) as dual-site loading on nitrogen-doped graphene aerogel (Fe─N/FeCo@NGA).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China. Electronic address:
Discovering a valid approach to achieve a novel and efficient water splitting catalyst is essential for the development of hydrogen energy technology. Herein, unique hollow-structured ruthenium (Ru)-doped nickel-cobalt oxide (Ru-NiO/CoO/NF) nanocube arrays are fabricated as high-efficiency bifunctional electrocatalysts for hydrogen evolution reaction (HER)/urea oxidation reaction (UOR) through combined electronic and vacancy engineering. The structural characterization and experimental results indicate that the doping of Ru can not only effectively modulate the electronic structure of Ru-NiO/CoO/NF, but also increase the content of oxygen vacancies in the structure of Ru-NiO/CoO/NF to stabilize the existence of oxygen vacancies during the catalytic process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory For Clean Energy, Zhongshan Road 457, 116023, Dalian, CHINA.
The addition of a redox mediator as soluble catalyst into electrolyte can effectively overcome the bottlenecks of poor energy efficiency and limited cyclability for Li-O2 batteries caused by passivation of insulating discharge products and unfavorable byproducts. Herein we report a novel soluble catalyst of bifunctional imidazolyl iodide salt additive, 1,3-dimethylimidazole iodide (DMII), to successfully construct highly efficient and durable Li-O2 batteries. The anion I- can effectively promote the charge transport of Li2O2 and accelerate the redox kinetics of oxygen reduction/oxygen evolution reactions on the cathode side, thereby significantly decreasing the charge/discharge overpotential.
View Article and Find Full Text PDFChem Asian J
December 2024
IIT Bombay: Indian Institute of Technology Bombay, Chemistry, INDIA.
Developing cost-effective, non-precious metal bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for advancing sustainable energy storage and conversion technologies, including zinc-air batteries, fuel cells, and water electrolyzers. This study presents a one-pot synthesis of cobalt-manganese mixed phosphates as effective bifunctional electrocatalysts for both ORR and OER. Among the catalysts tested, Na-Co-Mn-P [NaCo1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!