Novel brewing yeast hybrids: creation and application.

Appl Microbiol Biotechnol

VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.

Published: January 2017

The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5203825PMC
http://dx.doi.org/10.1007/s00253-016-8007-5DOI Listing

Publication Analysis

Top Keywords

brewing yeast
8
lager brewing
8
lager yeast
8
yeast strains
8
yeast
7
lager
5
novel brewing
4
hybrids
4
yeast hybrids
4
hybrids creation
4

Similar Publications

Exogenous Trehalose Assists in Resisting High-Temperature Stress Mainly by Activating Genes Rather than Entering Metabolism.

J Fungi (Basel)

December 2024

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.

is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its functional mechanism for yeast cells in the adaptation period under heat stress is unclear. In this study, the physiological metabolism changes, specific gene transcription expression characteristics, and transcriptome differences of under different carbon sources under high-temperature stress (40 °C) were compared to explore the mechanism of trehalose inducing to recover and proliferate under high-temperature stress during the adaptation period.

View Article and Find Full Text PDF

Optimization of fermentation conditions and blending process of fairy bean in North Anhui Province.

AMB Express

December 2024

School of Biological Engineering, Huainan Normal University, Huainan, 232038, Anhui, People's Republic of China.

Functional fermentation strains were isolated and screened from traditional fairy beans in northern Anhui. Through technical identification, Bacillus subtilis SXD06 was determined to be the superior fermentation strain, while Wickerhamomyces anomalus YE006 was identified as the optimal aroma-producing yeast. Utilizing single-factor experiments and response surface optimization, a Central Composite Design fermentation and blending model was established.

View Article and Find Full Text PDF

Changing trends in the brewing market show that breweries want to attract consumers with new products. New flavours and aromas in beer can be achieved by using various additives. However, non- yeast strains make it possible to produce beer with an original sensory profile but according to a traditional recipe (without additives).

View Article and Find Full Text PDF

Enzyme immobilization is a crucial method in biotechnology and organic chemistry that significantly improves the stability, reusability, and overall effectiveness of enzymes across various applications. Lipases are one of the most frequently applied enzymes in food. The current study investigated the potential of utilizing selected agri-food and waste materials-buckwheat husks, pea hulls, loofah sponges, and yerba mate waste-as carriers for the immobilization of Sustine 121 lipase and yeast biomass as whole-cell biocatalyst and lipase sources.

View Article and Find Full Text PDF

Excitation of filamentous growth in dekkera spp. By quorum sensing aromatic alcohols 2-phenylethanol and tryptophol.

FEMS Microbiol Lett

December 2024

International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland.

Fungi from the genus Dekkera, also known as Brettanomyces, are significant contaminants in commercial beer and wine production, and when present unintentionally, these non-domesticated yeasts result in the development of undesirable sensorial characteristics, in part due to the production of volatile phenols and acetate esters. The persistence of Dekkera spp. in industrial manufacturing environments can be attributed to its strong bioadhesive properties, allowing it to attach to various surfaces and form biofilms, which often contribute to recurrent contaminations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!