Sexual dimorphism in mitochondrial biogenesis and function has been described in many rat tissues, with females showing larger and more functional mitochondria. The family of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) plays a central role in the regulatory network governing mitochondrial biogenesis and function, but little is known about the different contribution of hepatic PGC1A and PGC1B in these processes. The aim of this study was to elucidate the role of 17β-estradiol (E2) in mitochondrial biogenesis and function in liver and assess the contribution of both hepatic PGC1A and PGC1B as mediators of these effects. In ovariectomized (OVX) rats (half of which were treated with E2) estrogen deficiency led to impaired mitochondrial biogenesis and function, increased oxidative stress, and defective lipid metabolism, but was counteracted by E2 treatment. In HepG2 hepatocytes, the role of E2 in enhancing mitochondrial biogenesis and function was confirmed. These effects were unaffected by the knockdown of PGC1A, but were impaired when PGC1B expression was knocked down by specific siRNA. Our results reveal a widespread protective role of E2 in hepatocytes, which is explained by enhanced mitochondrial content and oxidative capacity, lower hepatic lipid accumulation, and a reduction of oxidative stress. We also suggest a novel hepatic protective role of PGC1B as a modulator of E2 effects on mitochondrial biogenesis and function supporting activation of PGC1B as a therapeutic target for hepatic mitochondrial disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/JOE-16-0350 | DOI Listing |
Nutrients
January 2025
BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France.
Background: Physical activity, such as running, protects against cardiovascular disease and obesity but can induce oxidative stress. Athletes often consume antioxidants to counteract the overproduction of reactive oxygen and nitrogen species during exercise. , particularly its phycocyanin content, activates the Nrf2 pathway, stimulating antioxidant responses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA.
Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) crucial for regulating gene expression at the post-transcriptional level. Recent evidence has shown that miRNAs are also found in mitochondria, organelles that produce energy in the cell. These mitochondrial miRNAs, also known as mitomiRs, are essential for regulating mitochondrial function and metabolism.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
Mitochondria play key roles in maintaining cell life and cell function, and their dysfunction can lead to cell damage. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes and are assembled within the mitochondria. MRPs are pivotal components of the mitochondrial ribosomes, which are responsible for translating 13 mitochondrial DNA-encoded proteins essential for the mitochondrial respiratory chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!