Background Of Study: Enhanced protein glycation in diabetes causes irreversible cellular damage through membrane modifications. Erythrocytes are persistently exposed to plasma glycated proteins; however, little are known about its consequences on membrane. Aim of this study was to examine the relationship between plasma protein glycation with erythrocyte membrane modifications in type 2 diabetes patients with and without vascular complications.

Method: We recruited 60 healthy controls, 85 type 2 diabetic mellitus (DM) and 75 type 2 diabetic patients with complications (DMC). Levels of plasma glycation adduct with antioxidants (fructosamine, protein carbonyl, β-amyloids, thiol groups, total antioxidant status), erythrocyte membrane modifications (protein carbonyls, β-amyloids, free amino groups, erythrocyte fragility), antioxidant profile (GSH, catalase, lipid peroxidation) and Glut-1 expression were quantified.

Result: Compared with controls, DM and DMC patients had significantly higher level of glycation adducts, erythrocyte fragility, lipid peroxidation and Glut-1 expression whereas declined levels of plasma and cellular antioxidants. Correlation studies revealed positive association of membrane modifications with erythrocyte sedimentation rate, fragility, peroxidation whereas negative association with free amino groups, glutathione and catalase.

Conclusion: Our data suggest that plasma glycation is associated with oxidative stress, Glut-1 expression and erythrocyte fragility in DM patients. This may further contribute to progression of vascular complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdiacomp.2016.10.012DOI Listing

Publication Analysis

Top Keywords

membrane modifications
16
plasma glycation
12
erythrocyte fragility
12
glut-1 expression
12
relationship plasma
8
oxidative stress
8
type diabetes
8
diabetes patients
8
patients vascular
8
vascular complications
8

Similar Publications

The N17 domain of huntingtin as a multifaceted player in Huntington's disease.

Front Mol Biosci

January 2025

Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea.

Huntington's disease (HD) is primarily caused by the aberrant aggregation of the N-terminal exon 1 fragment of mutant huntingtin protein (mHttex1) with expanded polyglutamine (polyQ) repeats in neurons. The first 17 amino acids of the N-terminus of Httex1 (N17 domain) immediately preceding the polyQ repeat domain are evolutionarily conserved across vertebrates and play multifaceted roles in the pathogenesis of HD. Due to its amphipathic helical properties, the N17 domain, both alone and when membrane-associated, promotes mHttEx1 aggregation.

View Article and Find Full Text PDF

Introduction: The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis.

Nat Commun

January 2025

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!