Background: In contrast to the Western Palearctic and Nearctic biogeographic regions, the phylogeography of Eastern-Palearctic terrestrial vertebrates has received relatively little attention. In East Asia, tectonic events, along with Pleistocene climatic conditions, likely affected species distribution and diversity, especially through their impact on sea levels and the consequent opening and closing of land-bridges between Eurasia and the Japanese Archipelago. To better understand these effects, we sequenced mitochondrial and nuclear markers to determine phylogeographic patterns in East-Asian tree frogs, with a particular focus on the widespread H. japonica.
Results: We document several cryptic lineages within the currently recognized H. japonica populations, including two main clades of Late Miocene divergence (~5 Mya). One occurs on the northeastern Japanese Archipelago (Honshu and Hokkaido) and the Russian Far-East islands (Kunashir and Sakhalin), and the second one inhabits the remaining range, comprising southwestern Japan, the Korean Peninsula, Transiberian China, Russia and Mongolia. Each clade further features strong allopatric Plio-Pleistocene subdivisions (~2-3 Mya), especially among continental and southwestern Japanese tree frog populations. Combined with paleo-climate-based distribution models, the molecular data allowed the identification of Pleistocene glacial refugia and continental routes of postglacial recolonization. Phylogenetic reconstructions further supported genetic homogeneity between the Korean H. suweonensis and Chinese H. immaculata, suggesting the former to be a relic population of the latter that arose when the Yellow Sea formed, at the end of the last glaciation.
Conclusions: Patterns of divergence and diversity were likely triggered by Miocene tectonic activities and Quaternary climatic fluctuations (including glaciations), causing the formation and disappearance of land-bridges between the Japanese islands and the continent. Overall, this resulted in a ring-like diversification of H. japonica around the Sea of Japan. Our findings urge for important taxonomic revisions in East-Asian tree frogs. First, they support the synonymy of H. suweonensis (Kuramoto, 1980) and H. immaculata (Boettger, 1888). Second, the nominal H. japonica (Günther, 1859) represents at least two species: an eastern (new taxon A) on the northern Japanese and Russian Far East islands, and a southwestern species (n. t. B) on southern Japanese islands and possibly also forming continental populations. Third, these continental tree frogs may also represent an additional entity, previously described as H. stepheni Boulenger, 1888 (senior synonym of H. ussuriensis Nikolskii, 1918). A complete revision of this group requires further taxonomic and nomenclatural analyses, especially since it remains unclear to which taxon the species-epitheton japonica corresponds to.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121986 | PMC |
http://dx.doi.org/10.1186/s12862-016-0814-x | DOI Listing |
Animals (Basel)
January 2025
Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea.
The amphibian chytrid fungus, (), has been implicated as an agent of acute declines in amphibian populations worldwide. East Asian amphibians have been coexisting with for long periods and thus are considered resistant; among the many is the Japanese tree frog, . Our study focused infection effects on reproductive behaviors and physiological parameters in as a function of better understanding the chronic effect of the disease on long-term population viability.
View Article and Find Full Text PDFJ Parasitol
January 2025
Zoology, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901-6501.
The present work includes the description of Gyrinicola pilyolcatzin n. sp. (Nematoda: Oxyurida) collected from the large intestine of tadpoles of the Montezuma frog, Rana montezumae.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
April 2025
Department of Biology, University of New Mexico, Albuquerque, NM, USA.
A new genus and a new species of isosporoid coccidium (Apicomplexa: Conoidasida: Eimeriorina) are described and illustrated from green tree frogs () (Anura: Hylidae) imported from Papua New Guinea and Indonesia. The described species has disporocystic and tetrasporozoic oocysts without a Stieda body. Nine species originally belonging to the genus Schneider, 1881 in the family Eimeriidae Minchin, 1903 described from Anura are recognized as members of the new genus and new combinations of the species names are proposed.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
College of Ecology, Lishui University, Lishui, Zhejiang, China.
Unlabelled: and are recognized as significant opportunistic pathogens affecting aquatic animals and humans. However, their infections in amphibians are poorly documented, and their pathogenicity to the Chinese spiny frog () remains unexplored. This study investigated an outbreak of putrid-skin disease among on a farm in Lishui City, Zhejiang Province, China.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
December 2024
Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China. Electronic address:
Cathelicidin is a family of antimicrobial peptides in vertebrates that plays an important role in resistance and immunization against pathogenic microorganisms. In the present study, the full-length cDNA sequences of four novel cathelicidins (cathelicidin-1 to cathelicidin-4) in the tiger frog Hoplobatrachus rugulosus, encoding 153, 188, 132, and 160 amino acids, respectively, were firstly cloned by rapid amplification of the cDNA ends (RACE) technique. Sequence comparison and phylogenetic tree analysis indicated that the structures of the four cathelicidins are highly diverse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!