Background: Tumour budding, described as the presence of single cells or small clusters of up to five tumour cells at the invasive margin, is established as a prognostic marker in colorectal carcinoma. In the present study, we aimed to investigate the molecular signature of tumour budding cells and the corresponding tumour bulk.
Methods: Tumour bulk and budding areas were microdissected and processed for RNA-sequencing. As little RNA was obtained from budding cells, a special low-input mRNA library preparation protocol was used. Gene expression profiles of budding as compared with tumour bulk were investigated for established EMT signatures, consensus molecular subtype (CMS), gene set enrichment and pathway analysis.
Results: A total of 296 genes were differentially expressed with an FDR <0.05 and a twofold change between tumour bulk and budding regions. Genes that were upregulated in the budding signature were mainly involved in cell migration and survival while downregulated genes were important for cell proliferation. Supervised clustering according to an established EMT gene signature categorised budding regions as EMT-positive, whereas tumour bulk was considered EMT-negative. Furthermore, a shift from CMS2 (epithelial) to CMS4 (mesenchymal) was observed as tumour cells transit from the tumour bulk to the budding regions.
Conclusions: Tumour budding regions are characterised by a phenotype switch compared with the tumour bulk, involving the acquisition of migratory characteristics and a decrease in cell proliferation. In particular, most tumour budding signatures were EMT-positive and switched from an epithelial subtype (CMS2) in the tumour bulk to a mesenchymal subtype (CMS4) in budding cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220148 | PMC |
http://dx.doi.org/10.1038/bjc.2016.382 | DOI Listing |
Int J Gynecol Pathol
January 2025
Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School.
Ovarian clear cell carcinoma (OCCC) is an endometriosis-related neoplasm, in which traditional histologic grading does not show prognostic significance. Tumor budding was associated with poorer outcomes in OCCC in previous studies. We aimed to evaluate the prognostic significance of tumor budding in OCCC in an independent cohort.
View Article and Find Full Text PDFMitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in . Pin4 is a multi-phosphorylated protein that has been reported to be involved in the cell wall integrity (CWI) pathway and DNA damage response. Pin4 was reported to interact with Hrr25 in yeast two-hybrid and large-scale pulldown assays.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
γ-Aminobutyric acid (GABA) is a valuable amino acid widely used in food, healthcare, and agriculture. GABA bioproduction by budding yeasts has been commonly reported, but related studies using non-conventional yeasts remain limited. In this study, two non-conventional natural yeast strains, namely, JMY140K and JMY075, were identified as promising GABA producers, and JMY075 was discovered to be a GABA producer.
View Article and Find Full Text PDFPLoS One
January 2025
Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!