We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 10 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.14320 | DOI Listing |
Plant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory for Forest Genetics and Tree Improvement and Propagation in University of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in . In this study, we conducted a genome-wide study of the family and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements, and response to stress treatment.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Studying climate change's impact on vegetation canopy growth and senescence is significant for understanding and predicting vegetation dynamics. However, there is a lack of adequate research on canopy changes across the lifecycles of different vegetation types. Using GLASS LAI (leaf area index) data (2001-2020), we investigated canopy development (April-June), maturity (July-August), and senescence (September-October) rates in Northeast China, focusing on their responses to preseason climatic factors.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Intercropping has the potential to improve phosphorus (P) uptake and crop growth, but the potential benefits and relative contributions of root morphology and arbuscular mycorrhizal fungi (AMF) colonization are largely unknown for the intercropping of rice and soybean under dry cultivation. Both field and pot experiments were conducted with dry-cultivated rice ( L.) and soybean ( L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!