pH-responsive Virus-like Nanoparticles with Enhanced Tumour-targeting Ligands for Cancer Drug Delivery.

Sci Rep

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Published: November 2016

Multifunctional nanocarriers harbouring specific targeting moieties and with pH-responsive properties offer great potential for targeted cancer therapy. Several synthetic drug carriers have been studied extensively as drug delivery systems but not much information is available on the application of virus-like nanoparticles (VLNPs) as multifunctional nanocarriers. Here, we describe the development of pH-responsive VLNPs, based on truncated hepatitis B virus core antigen (tHBcAg), displaying folic acid (FA) for controlled drug delivery. FA was conjugated to a pentadecapeptide containing nanoglue bound on tHBcAg nanoparticles to increase the specificity and efficacy of the drug delivery system. The tHBcAg nanoparticles loaded with doxorubicin (DOX) and polyacrylic acid (PAA) demonstrated a sustained drug release profile in vitro under tumour tissue conditions in a controlled manner and improved the uptake of DOX in colorectal cancer cells, leading to enhanced antitumour effects. This study demonstrated that DOX-PAA can be packaged into VLNPs without any modification of the DOX molecules, preserving the pharmacological activity of the loaded DOX. The nanoglue can easily be used to display a tumour-targeting molecule on the exterior surface of VLNPs and can bypass the laborious and time-consuming genetic engineering approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121657PMC
http://dx.doi.org/10.1038/srep37891DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
virus-like nanoparticles
8
multifunctional nanocarriers
8
thbcag nanoparticles
8
drug
6
ph-responsive virus-like
4
nanoparticles
4
nanoparticles enhanced
4
enhanced tumour-targeting
4
tumour-targeting ligands
4

Similar Publications

Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.

View Article and Find Full Text PDF

Spectroscopic Manifestation of a Weak van der Waals Interaction Between -Stilbene and Hexagonal Boron Nitride Surface.

Langmuir

March 2025

Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy.

The interaction between organic molecules and nanomaterials leads to complexation or the functionalization of later and modification of their properties, which are promising for electronics, terahertz technology, photonics, medical imaging, drug delivery, and other applications. Based on theoretical and experimental (THz, Raman, and fluorescence spectroscopy) studies, we analyzed the main spectroscopic characteristics of a weakly bound van der Waals complex of -stilbene (TS) molecule and hexagonal boron nitride (hBN). Raman scattering was demonstrated to be the most effective tool to confirm complex formation, exhibiting blue-shifted TS fingerprint lines in the TS + hBN Raman spectrum with respect to the spectra of pure TS or BN.

View Article and Find Full Text PDF

Biomolecule-engineered metal-organic frameworks (Bio-MOFs) are designed by incorporating biomolecules into or onto MOFs through covalent and non-covalent interactions. These composite frameworks exhibit unique catalytic and biological activities, making them highly suitable for various biocatalytic applications. In this review, we highlight recent advances in the material design, bioengineering methods, structural and functional regulation techniques, and biocatalytic applications of Bio-MOFs.

View Article and Find Full Text PDF

Chitosan is widely used in drug delivery applications, due to its biocompatibility, bio-degradability, and low toxicity. Nevertheless, its properties can be enhanced through the physical or chemical modification of its amino and hydroxyl groups. This work explores the electrostatic complexation of two chitosan samples of differing lengths with two poly(-isopropylacrylamide) (PNIPAM) homopolymers of different molecular weight carrying a chargeable carboxyl end group.

View Article and Find Full Text PDF

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!