A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measuring intratumor heterogeneity by network entropy using RNA-seq data. | LitMetric

Measuring intratumor heterogeneity by network entropy using RNA-seq data.

Sci Rep

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Korea.

Published: November 2016

Intratumor heterogeneity (ITH) is observed at different stages of tumor progression, metastasis and reouccurence, which can be important for clinical applications. We used RNA-sequencing data from tumor samples, and measured the level of ITH in terms of biological network states. To model complex relationships among genes, we used a protein interaction network to consider gene-gene dependency. ITH was measured by using an entropy-based distance metric between two networks, nJSD, with Jensen-Shannon Divergence (JSD). With nJSD, we defined transcriptome-based ITH (tITH). The effectiveness of tITH was extensively tested for the issues related with ITH using real biological data sets. Human cancer cell line data and single-cell sequencing data were investigated to verify our approach. Then, we analyzed TCGA pan-cancer 6,320 patients. Our result was in agreement with widely used genome-based ITH inference methods, while showed better performance at survival analysis. Analysis of mouse clonal evolution data further confirmed that our transcriptome-based ITH was consistent with genetic heterogeneity at different clonal evolution stages. Additionally, we found that cell cycle related pathways have significant contribution to increasing heterogeneity on the network during clonal evolution. We believe that the proposed transcriptome-based ITH is useful to characterize heterogeneity of a tumor sample at RNA level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121893PMC
http://dx.doi.org/10.1038/srep37767DOI Listing

Publication Analysis

Top Keywords

transcriptome-based ith
12
clonal evolution
12
intratumor heterogeneity
8
heterogeneity network
8
ith
8
data
6
heterogeneity
5
measuring intratumor
4
network
4
network entropy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!