Colonization of fluorinated surfaces produced by ion-plasma technology by Staphylococcus aureus was studied by scanning electron microscopy and surface energy analysis. It was shown that the intensity of colonization was determined by the surface relief and fluorine content. Formation of nanostructured surfaces accompanied by a sharp decrease in the surface energy prevented adhesion of Staphylococcus aureus cells to the fluorine-containing surface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-016-3548-2DOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
12
fluorinated surfaces
8
ion-plasma technology
8
surface energy
8
colonization staphylococcus
4
aureus nano-structured
4
nano-structured fluorinated
4
surfaces formed
4
formed methods
4
methods ion-plasma
4

Similar Publications

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Red and blue LED light increases the survival rate of random skin flaps in rats after MRSA infection.

Lasers Med Sci

January 2025

Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.

Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats.

View Article and Find Full Text PDF

Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition.

View Article and Find Full Text PDF

is frequently isolated during prosthetic joint infections (PJIs). Unlike , its internalization and persistence within cells are controversial. We aimed to determine whether internalization is involved in the pathophysiology of PJIs.

View Article and Find Full Text PDF

Purpose: Periprosthetic joint infection (PJI) is a devastating complication that has been extensively investigated in large joint arthroplasty. However, this has been inconsistently reported after metacarpophalangeal (MCP) and proximal interphalangeal (PIP) arthroplasty. The objective of the study was to report the presentation and treatment of patients with PJI after MCP or PIP joint arthroplasty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!