We analyzed viability of mesenchymal stem cells seeded by static and dynamic methods to highly porous fibrous 3D poly-L-lactide scaffolds with similar physical and chemical properties, but different spatial organization modified with collagen. Standard collagen coating promoted protein adsorption on the scaffold surface and improved adhesive properties of 100 μ-thick scaffolds. Modification of 600-μ scaffolds with collagen under pressure increased proliferative activity of mesenchymal stem cells seeded under static and dynamic (delivery of 100,000 cells in 10 ml medium in a perfusion system at a rate of 1 ml/min) conditions by 47 and 648%, respectively (measured after 120-h culturing by MTT test). Dynamic conditions provide more uniform distribution of collagen on scaffold fibers and promote cell penetration into 3D poly-L-lactide scaffolds with thickness >600 μ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-016-3560-6 | DOI Listing |
Stem Cells Dev
January 2025
Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia.
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.
View Article and Find Full Text PDFMol Carcinog
January 2025
Institute of Tissue Engineering and Stem Cells, Beijing Anzhen Nanchong Hospital of Capital Medical University, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).
Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!