is a nematode parasite that causes the common tropical infection ascariasis in humans. It is also considered among the neglected tropical diseases. Diagnosis relies mainly on microscopy-based methods which are laborious, are limited by low sensitivity, and require high expertise. We have developed a loop mediated isothermal amplification (LAMP) for diagnosis of ascariasis in fecal samples, based on the first internal transcribed (ITS-1) spacer region of the ribosomal DNA. We used Primer Explorer V4 software to design primers. adult and ova were obtained from naturally infected school children, whose parents/guardians gave consent for their participation in the study. Genomic DNA was extracted using alkaline lysis method and amplified by LAMP at 63°C for 45 minutes. LAMP products were visualized by naked eyes after adding SYBR Green dye and also on agarose gel. LAMP successfully and reliably detected DNA from a single egg and in fecal samples. The assay specifically detected DNA without amplifying DNA from ova of other parasites which commonly coexist with in feces. The developed LAMP assay has great potential for use in ascariasis diagnosis at the point of care and in low infection intensity situation that characterize control and elimination campaigns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108867 | PMC |
http://dx.doi.org/10.1155/2016/7376207 | DOI Listing |
BMJ Open Gastroenterol
December 2024
Florence Nightingale Faculty of Nursing Midwifery & Palliative Care, King's College London, London, UK
Objective: Many people with inflammatory bowel disease (IBD) experience fatigue, pain and faecal incontinence that some feel are inadequately addressed. It is unknown how many have potentially reversible medical issues underlying these symptoms.
Methods: We conducted a study testing the feasibility of a patient-reported symptom checklist and nurse-administered management algorithm ('Optimise') to manage common medical causes of IBD-related fatigue, pain and faecal incontinence.
Nutrients
January 2025
Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
Objective: TRE is an emerging approach in obesity treatment, yet there is limited data on how it influences gut microbiome composition in humans. Our objective was to characterize the gut microbiome of human participants before and after a TRE intervention. This is a secondary analysis of a previously published clinical trial examining the effects of time-restricted eating (TRE).
View Article and Find Full Text PDFNutrients
December 2024
IFF, Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland.
Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).
Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.
Nutrients
December 2024
Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy.
Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass.
Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25-29.9), Group II (30-39.
Nutrients
December 2024
Department of Cardiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
Background: Micronutrient deficiencies are common and play a significant role in the prognosis of many chronic diseases, including heart failure (HF), but their prevalence in HF is not well known. As studies have traditionally focused on causes originating within the intestines, exocrine pancreatic insufficiency (EPI) has been overlooked as a potential contributor. The exocrine pancreas enables the absorption of various (fat-soluble) micronutrients and may be insufficient in HF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!