Unlabelled: MicroRNAs (miRNAs) play an important role in the regulation of immune responses. Previous studies have indicated that dysregulating the miRNAs leads to the immunosuppression of porcine reproductive and respiratory syndrome virus (PRRSV). However, it is not clear how PRRSV regulates the expression of host miRNA, which may lead to immune escape or promote the replication of the virus. The present work suggests that PRRSV upregulated the expression of miR-373 through elevating the expression of specificity protein 1 (Sp1) in MARC-145 cells. Furthermore, this work demonstrated that miR-373 promoted the replication of PRRSV, since miR-373 was a novel negative miRNA for the production of beta interferon (IFN-β) by targeting nuclear factor IA (NFIA), NFIB, interleukin-1 receptor-associated kinase 1 (IRAK1), IRAK4, and interferon regulatory factor 1 (IRF1). We also found that both NFIA and NFIB were novel proteins for inducing the production of IFN-β, and both of them could inhibit the replication of PRRSV. In conclusion, PRRSV upregulated the expression of miR-373 by elevating the expression of Sp1 and hijacked the host miR-373 to promote the replication of PRRSV by negatively regulating the production of IFN-β.
Importance: PRRSV causes one of the most economically devastating diseases of swine, and there is no effective method for controlling PRRSV. It is not clear how PRRSV inhibits the host's immune response and induces persistent infection. Previous studies have shown that PRRSV inhibited the production of type I IFN, and the treatment of type I IFN could efficiently inhibit the replication of PRRSV, so it will be helpful to design new methods of controlling PRRSV by understanding the molecular mechanism by which PRRSV modulated the production of IFN. The current work shows that miR-373, upregulated by PRRSV, promotes PRRSV replication, since miR-373 impaired the production of IFN-β by targeting NFIA, NFIB, IRAK1, IRAK4, and IRF1, and both NFIA and NFIB were antiviral proteins to PRRSV. In conclusion, this paper revealed a novel mechanism of PRRSV that impaired the production of type I IFN by upregulating miR-373 expression in MARC-145 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5244336 | PMC |
http://dx.doi.org/10.1128/JVI.01311-16 | DOI Listing |
Vet Microbiol
January 2025
Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood.
View Article and Find Full Text PDFAm J Vet Res
January 2025
Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
Objective: To determine the predictive potential of the open reading frame 5 nucleotide sequence of porcine reproductive and respiratory syndrome (PRRS) virus and the basic demographic data on the severity of the impact on selected production parameters during clinical PRRS outbreaks in Ontario sow herds.
Methods: A retrospective longitudinal study of clinical outbreaks in Ontario sow herds at various points between September 5, 2009, and February 5, 2019, was conducted using herds as units of analysis. Data were gathered from study sow farms in Ontario at the start of each clinical outbreak.
Vet Microbiol
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:
NADC34-like porcine reproductive and respiratory syndrome virus 2 (NADC34-like PRRSV-2) is currently a major prevalent strain in Chinese swine industry. Within which, recombination events are frequently detected. Previous studies have shown that the pathogenicity of NADC34-like PRRSV-2 isolates is highly variable.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea.
Understanding the molecular interactions between porcine reproductive and respiratory syndrome viruses (PRRSVs) and host cells is crucial for developing effective strategies against PRRSV. CD163, predominantly expressed in porcine macrophages and monocytes, is a key receptor for PRRSV infection. CD169, also known as Sialoadhesin, has emerged as a potential receptor facilitating PRRSV internalization.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
BioAssets Corporation, Santo Tomas, Batangas, Philippines.
We report two coding-complete genome sequences of porcine reproductive and respiratory syndrome virus 2 from field clinical samples obtained in 2021 (BA2021012A) and 2023 (ME20230008B-2) from the Philippines. BA2021012A (15,388 bp) is classified as a lineage L8C strain while ME20230008B-2 (15,513 bp) is a vaccine-like strain in lineage L7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!