Molecularly Imprinted Polymers: Thermodynamic and Kinetic Considerations on the Specific Sorption and Molecular Recognition.

Sensors (Basel)

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.

Published: April 2008

This article presents a work aiming at thermodynamically and kinetically interpreting the specific sorption and recognition by a molecularly imprinted polymer. Using Boc-L-Phe-OH as a template, the imprinted material was prepared. The result indicates that the prepared polymer can well discriminate the imprint species from its analogue (Boc-D-Phe-OH), so as to adsorb more for the former but less for the latter. Kinetic analysis indicates that this specific sorption, in nature, can be a result of a preferential promotion. The imprint within the polymer causes a larger adsorption rate for the template than for the analogue. Thermodynamic study also implies that the molecular induction from the specific imprint to the template is larger than to the analogue, which thus makes the polymer capable of preferentially alluring the template to bind.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673449PMC
http://dx.doi.org/10.3390/s8042854DOI Listing

Publication Analysis

Top Keywords

specific sorption
12
molecularly imprinted
8
imprinted polymers
4
polymers thermodynamic
4
thermodynamic kinetic
4
kinetic considerations
4
specific
4
considerations specific
4
sorption molecular
4
molecular recognition
4

Similar Publications

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

In order to enrich the selection of biological ligands, realize the miniaturization analysis, and broaden the application of monolith materials for active ingredients screening and separating, we sough to construct a lipid raft @capillary monolith microcolumn affinity chromatography model. Single factor experiments and various characterization methods, including scanning electron microscopy (SEM) and thermogravimetric analysis, were employed to investigate the polymerization of the monolith column under different material ratios to determine optimal preparation conditions. Subsequently, the lipid raft from U251 cells was integrated with the monolith materials based on epoxy-based covalent crosslinking principle and characterized through SEM and immunofluorescence methods.

View Article and Find Full Text PDF

Functionalization of Layered Double Hydroxides on Bentonite for Cesium and Iodine Retention in High-level Radioactive Waste Disposal.

Chemosphere

December 2024

Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, Korea; Division of Environmental Science & Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, Korea. Electronic address:

Bentonite is regarded as an adequate buffer material in deep geological repositories and its swelling properties serve to prevent the penetration of groundwater into the repository and to minimize the release of radionuclides. However, bentonite is rarely effective in removing anionic radionuclides due to its permanent negative surface charge. The aim of this study was to enhance the anion removal ability of bentonite by incorporating layered double hydroxides (LDH) with a high anion exchange capacity.

View Article and Find Full Text PDF

Adsorptive immobilization of cadmium and lead using unmodified and modified biochar: A review of the advances, synthesis, efficiency and mechanisms.

Chemosphere

December 2024

The Department of Environmental Science, The University of Arizona (UA), Tucson, Arizona 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China. Electronic address:

Biochar is an environmentally friendly adsorbent material with excellent adsorption performance due to its extensive pore structure, large specific surface area, and numerous surface functional groups. It is commonly used to treat inorganic and organic pollutants. In recent years, with increasing focus on controlling soil pollution caused by heavy metals such as cadmium (Cd) and lead (Pb), the potential application of biochar has attracted much attention.

View Article and Find Full Text PDF

6PPDQ is a tire-derived contaminant toxic to coho salmon (LC = 41-95 ng/L) found widely distributed in urban environments. Most monitoring efforts have relied on relatively few discrete samples collected at select locations across rain events. Early work has revealed that 6PPDQ concentrations vary widely over time and space, raising questions about when and where to collect samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!