A visible sensor array system for simultaneous multiple SNP genotyping has been developed using a new plastic base with specific surface chemistry. Discrimination of SNP alleles is carried out by an allele-specific extension reaction using immobilized oligonucleotide primers. The 3'-ends of oligonucleotide primers are modified with a locked nucleic acid to enhance their efficiency in allelic discrimination. Biotin-dUTPs included in the reaction mixture are selectively incorporated into extending primer sequences and are utilized as tags for alkaline phosphatase-mediated precipitation of colored chemical substrates onto the surface of the plastic base. The visible precipitates allow immediate inspection of typing results by the naked eye and easy recording by a digital camera equipped on a commercial mobile phone. Up to four individuals can be analyzed on a single sensor array and multiple sensor arrays can be handled in a single operation. All of the reactions can be performed within one hour using conventional laboratory instruments. This visible genotype sensor array is suitable for "focused genomics" that follows "comprehensive genomics".
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673442 | PMC |
http://dx.doi.org/10.3390/s8042722 | DOI Listing |
This paper presents an adaptive fast Fourier transform (adaptive FFT) demodulation scheme, aimed at enhancing the precision and noise suppression capability of signal processing in fiber-optic interferometric sensors. By adaptively optimizing the length of the acquired spectrum and dynamically adjusting the frequency domain resolution, the proposed scheme can precisely calculate the eigenfrequency of the reflected spectrum. Therefore, the adaptive FFT demodulation scheme can effectively enhance the extraction ability of phase quadrature demodulation signal.
View Article and Find Full Text PDFSapphire fiber Bragg gratings (SFBGs) are promising high-temperature sensors in many harsh environments, such as aviation, nuclear power, and furnaces. Here, we proposed and experimentally demonstrated a quasi-distributed high-temperature sensor based on an SFBG array sealed in an argon gas-infiltrated sapphire tube interrogated by using an InGaAs-based interrogator. An SFBG array including five SFBGs was inscribed using the femtosecond laser line-by-line method and sealed in an argon gas-infiltrated sapphire tube.
View Article and Find Full Text PDFTime-of-flight Lidars based on single-photon avalanche diode (SPAD) detector arrays are emerging as a strong candidate technology for long range three-dimensional imaging in challenging environmental conditions. However, reaching this bound requires the existence of an unbiased estimator, which does not necessarily exist for data acquired by realistic SPAD-based Lidar systems. Here, we extend our existing SPAD Lidar modelling framework to include a novel metric, which we term the 'Binomial Separation Criterion', as a means of quantifying whether a depth estimation algorithm will reach the Cramér-Rao bound (CRB).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA.
This paper presents an in-pixel contrast enhancement circuit that performs image processing directly within the pixel circuit. The circuit leverages HyperFET, a hybrid device combining a MOSFET and a phase transition material (PTM), to enhance performance. It can be tuned for different modes of operation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!