Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673424 | PMC |
http://dx.doi.org/10.3390/s8042436 | DOI Listing |
Malar J
January 2025
MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France.
Background: The increasing availability of electronic health system data and remotely-sensed environmental variables has led to the emergence of statistical models capable of producing malaria forecasts. Many of these models have been operationalized into malaria early warning systems (MEWSs), which provide predictions of malaria dynamics several months in advance at national and regional levels. However, MEWSs rarely produce predictions at the village-level, the operational scale of community health systems and the first point of contact for the majority of rural populations in malaria-endemic countries.
View Article and Find Full Text PDFSci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Brucellosis is a significant global challenge, but there has been a lack of epidemiological studies on brucellosis in Xinjiang from a change point perspective. This study aims to bridge this gap by employing sequence decomposition and identifying significant change points, with datasets sourced from the Xinjiang Disease Prevention and Control Information System. This study employed the BEAST algorithm to decompose the brucellosis time series in Xinjiang from 2010 to 2023, while simultaneously identifying change points in the decomposed seasonal and trend components.
View Article and Find Full Text PDFWater Res
January 2025
Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China. Electronic address:
Iron electrocoagulation (Fe-EC) exhibits broad application in water remediation towards various pollutants, including emerging organic phosphorus compounds (i.e., phosphonates).
View Article and Find Full Text PDFTransfus Apher Sci
January 2025
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Objectives: Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy associated with severe deficiency in ADAMTS13. ADAMTS13 deficiency may be secondary to absent or dysfunctional protein production due to mutations in the ADAMTS13 gene (congenital TTP) or autoantibody-mediated clearance and/or inhibition (immune-mediated TTP). This autoimmunity may, albeit rarely, occur secondary to certain medications (eg, ticlopidine).
View Article and Find Full Text PDFJMIR Infodemiology
January 2025
Salzburg University of Applied Sciences, Puch/Salzburg, Austria.
Background: The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!