G Protein-Coupled Receptor Endocytosis Confers Uniformity in Responses to Chemically Distinct Ligands.

Mol Pharmacol

Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.).

Published: February 2017

The ability of chemically distinct ligands to produce different effects on the same G protein-coupled receptor (GPCR) has interesting therapeutic implications, but, if excessively propagated downstream, would introduce biologic noise compromising cognate ligand detection. We asked whether cells have the ability to limit the degree to which chemical diversity imposed at the ligand-GPCR interface is propagated to the downstream signal. We carried out an unbiased analysis of the integrated cellular response elicited by two chemically and pharmacodynamically diverse β-adrenoceptor agonists, isoproterenol and salmeterol. We show that both ligands generate an identical integrated response, and that this stereotyped output requires endocytosis. We further demonstrate that the endosomal β2-adrenergic receptor signal confers uniformity on the downstream response because it is highly sensitive and saturable. Based on these findings, we propose that GPCR signaling from endosomes functions as a biologic noise filter to enhance reliability of cognate ligand detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267521PMC
http://dx.doi.org/10.1124/mol.116.106369DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
8
confers uniformity
8
chemically distinct
8
distinct ligands
8
propagated downstream
8
biologic noise
8
cognate ligand
8
ligand detection
8
receptor endocytosis
4
endocytosis confers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!