Task-switching performance relies on a broadly distributed frontoparietal network and declines in older adults. In this study, they investigated whether this age-related decline in task switching performance was mediated by variability in global or regional white matter microstructural health. Seventy cognitively intact adults (43-87 years) completed a cued-trials task switching paradigm. Microstructural white matter measures were derived using diffusion tensor imaging (DTI) analyses on the diffusion-weighted imaging (DWI) sequence. Task switching performance decreased with increasing age and radial diffusivity (RaD), a measure of white matter microstructure that is sensitive to myelin structure. RaD mediated the relationship between age and task switching performance. However, the relationship between RaD and task switching performance remained significant when controlling for age and was stronger in the presence of cardiovascular risk factors. Variability in error and RT mixing cost were associated with RaD in global white matter and in frontoparietal white matter tracts, respectively. These findings suggest that age-related increase in mixing cost may result from both global and tract-specific disruption of cerebral white matter linked to the increased incidence of cardiovascular risks in older adults. Hum Brain Mapp 38:1588-1603, 2017. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866847 | PMC |
http://dx.doi.org/10.1002/hbm.23473 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!