Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings. Despite containing reduced amounts of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets over the coated area than silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite coatings, silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating exhibited effective antibacterial property with enhanced bioactivity. By exhibiting good controllability of distributing silicon-substituted hydroxyapatite, silver-substituted hydroxyapatite and hydroxyapatite micro-droplets, it was demonstrated that drop-on-demand micro-dispensing technique was capable in harnessing the advantages of silver-substituted hydroxyapatite, silicon-substituted hydroxyapatite and hydroxyapatite to produce a multi-material coating along with enhanced bioactivity and reduced infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-016-5812-4 | DOI Listing |
Biomater Adv
March 2022
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore. Electronic address:
Bone fractures are one of the most common injuries, and they have a big effect on population health worldwide. Traumatic bone injuries can be partially treated with implanting bone-graft substitutes, for example, hydroxyapatite (HA), a bioceramic that is similar materially to natural bones with good bioactivity and osteoconductivity. It could, however, be vulnerable to infections because of the way an HA-based bone graft is put in, which could be a weakness in the host's defense.
View Article and Find Full Text PDFBiol Trace Elem Res
February 2022
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
Infection in bone transplantation process is attracting considerable attention. The current study synthesizes silver/strontium co-substituted hydroxyapatite (Ag/Sr-HA) nanoparticles with combined osteogenic and antibacterial activities. Different concentrations of silver-substituted hydroxyapatite (Ag-HA) nanoparticles were synthesized by hydrothermal method, and then their physicochemical properties were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDS).
View Article and Find Full Text PDFUltrason Sonochem
December 2019
Research Department of Physics, Bishop Heber College, Tiruchirappalli 17, Tamilnadu, India. Electronic address:
The present study reports the fabrication of silver substituted hydroxyapatite/functionalized multiwall carbon nanotube (Ag-HA/f-MWCNT) on 316L stainless steel (SS) implant by spray pyrolysis technique. XRD results show an enhanced crystallinity and crystallite sizes with increasing concentration of silver in HA/f-MWCNT. The vibrational spectral analysis revealed the presence of P-O stretching vibration of phosphate group (PO) in all the samples.
View Article and Find Full Text PDFBiomed Tech (Berl)
June 2018
Aysin Biotechnology Company, Buyukcekmece, Istanbul, Turkey.
Hydroxyapatite (HA)-based biografts with selenium (Se) and silver (Ag) substitutions were synthesized using the sol-gel method. The synthesized HA-based biografts at various Se and Ag quantity ratios (wt%) were characterized via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-Ray spectroscopy (EDX). Escherichia coli (JM103) and Gram-positive Staphylococcus aureus (ATCC29293) bacteria were used for the cell viability tests by performing the MTT assay.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2017
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117 576, Singapore.
Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!