Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s41061-016-0080-9 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
Various sustainable energy conversion techniques like water electrolyzers, fuel cells, and metal-air battery devices are promising to alleviate the issues in fossil fuel consumption. However, their broad employment has been mainly inhibited by the lack of advanced electrocatalysts to accelerate the sluggish kinetics of the three involved half-reactions including oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Recent advances have witnessed the cucurbit[]uril (CB[])-directed strategy as a prominent tool to develop high performance electrocatalysts with either OER, ORR, or HER activities.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China. Electronic address:
The design and screening of low cost and high efficiency oxygen reduction reaction (ORR) electrocatalysts is vital in the realms of fuel cells and metal-air batteries. Existing studies largely rely on the calculation of absorption free energy, a method established 20 years ago by Jens K. Nørskov.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia.
Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.
View Article and Find Full Text PDFLangmuir
January 2025
School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
The evolution of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts that are highly active, stable, and conductive is crucial for advancing metal-air batteries and fuel cells. We have here thoroughly explored the OER and ORR performance for a category of two-dimensional (2D) metal-organic frameworks (MOFs) called TM(HADQ), and Rh(HADQ) exhibits a promising bifunctional OER/ORR activity, with an overpotential of 0.31 V for both OER and ORR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!