Fluoroscopic freehand and electromagnetic-guided targeting system for distal locking screws of humeral intramedullary nail.

Musculoskelet Surg

Department of Anatomical Sciences, Histological, Forensic Medicine and Locomotive System, Sapienza University of Rome, Piazzale Aldo Moro n ° 5, Rome, Italy.

Published: April 2017

Purpose: The current techniques used to lock distal screws for the nailing of long bone fractures expose the surgeons, radiologists and patients to a hearty dose of ionizing radiation. The Sureshot™ Distal Targeting System is a new technique that, with the same results, allows for shorter surgery times and, consequently, less exposure to radiation.

Materials And Methods: The study was performed on 59 patients (34 males and 25 females) with a simple humerus fracture diagnosis, type 1.2.A according to the AO classification, who were divided into two groups. Group 1 was treated with ante-grade intramedullary nailing with distal locking screws inserted with a freehand technique. Group 2 was treated with the intramedullary nail using the Sureshot™ Distal Targeting System. Two intra-operative time parameters were evaluated in both groups: the time needed for the positioning of the distal locking screws and the time of exposure to ionizing radiations during this procedure.

Results: Group 2 showed a lower average distal locking time compared to group 1 (645.48″ vs. 1023.57″) and also a lower average time of exposure to ionizing radiation than in group 1 (4.35″ vs. 28.96″).

Conclusion: The Sureshot™ Distal Targeting System has proven to be equally effective when compared to the traditional techniques, with the added benefits of a significant reduction in both surgical time and risk factors related to the exposure to ionizing radiation for all the operating room staff and the patient.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12306-016-0436-xDOI Listing

Publication Analysis

Top Keywords

targeting system
16
distal locking
16
locking screws
12
ionizing radiation
12
sureshot™ distal
12
distal targeting
12
exposure ionizing
12
distal
8
intramedullary nail
8
group treated
8

Similar Publications

-polarized M2-like tumor-associated macrophages accelerate colorectal cancer development via IL-8 secretion.

Anim Cells Syst (Seoul)

December 2024

Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

(), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system.

View Article and Find Full Text PDF

controls wing developmental growth by targeting .

Anim Cells Syst (Seoul)

December 2024

School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.

Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in wing development remains unclear. In this study, we found that the wing size of adult flies was negatively affected by miR-263b expression.

View Article and Find Full Text PDF

EBV-specific T-cell immunity: relevance for multiple sclerosis.

Front Immunol

December 2024

Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.

Genetic and environmental factors jointly determine the susceptibility to develop multiple sclerosis (MS). Improvements in the design of epidemiological studies have helped to identify consistent environmental risk associations such as the increased susceptibility for MS following Epstein-Barr virus (EBV) infection, while biological mechanisms that drive the association between EBV and MS remain incompletely understood. An increased and broadened repertoire of antibody and T-cell immune responses to EBV-encoded antigens, especially to the dominant CD4 T-cell EBV nuclear antigen 1 (EBNA1), is consistently observed in patients with MS, indicating that protective EBV-specific immune responses are deregulated in MS and potentially contribute to disease development.

View Article and Find Full Text PDF

Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.

View Article and Find Full Text PDF

RNA nanotherapeutics for hepatocellular carcinoma treatment.

Theranostics

January 2025

Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!