The functionality of compact nanostructured thin films depends critically on the degree of order and hence on the underlying ordering mechanisms during film formation. For dip coating of rigid nanorods the counteracting mechanisms, evaporation-induced self-assembly (EISA) and shear-induced alignment (SIA) have recently been identified as competing ordering mechanisms. Here, we show how to achieve highly ordered and homogeneous thin films by controlling EISA and SIA in dip coating. Therefore we identify the influences of the process parameters including temperature, initial volume fraction and nanorod aspect ratio on evaporation-induced convective flow and externally applied shear forces and evaluate the resulting films. The impact of evaporation and shear can be distinguished by analysing film thickness, surface order and bulk order by careful in situ SAXS, Raman and SEM-based image analysis. For the first time we derive processing guidelines for the controlled application of EISA and SIA towards highly ordered thin nematic films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr06586d | DOI Listing |
Biomater Adv
December 2024
Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:
Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.
View Article and Find Full Text PDFPhys Rev E
November 2024
National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
A common intuition in thermodynamics is that bubbles can spontaneously grow in unstable liquids, which will be detrimental to a variety of physical and chemical processes, such as evaporation-induced self-assembly and electrocatalysis. Here, we show that this common intuition can be significantly reversed by demonstrating a suppression of bubbles in unstable active liquids induced by fast evaporation, which is in contrast to the bubble growth in passive liquids. Such anomalous bubble suppression can be attributed to an activity-induced inversion of pressure difference between bubbles and their surrounding liquid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Passive daytime radiative cooling is receiving more and more attention as a cooling method that does not consume energy to cool objects. However, most radiative cooling materials require the mixing of multiple particles, which increases the manufacturing process requirements. Most radiative cooling materials are susceptible to outdoor abrasion, pollution, and UV exposure, which leads to decreased performance.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK. Electronic address:
Hypothesis: Supra-particle formation by evaporation of an aqueous aerosol droplet containing nano-colloidal particles is challenging to investigate but has significant applications. We hypothesise that the Peclet number, Pe, which compares the effectiveness of evaporation-induced advection to that of colloidal diffusion, is critical in determining supra-particle morphology and can be used to predict the dried morphology for droplet containing polydisperse nanoparticles.
Experiments: Sterically-stabilized diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA).
Dalton Trans
November 2024
Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!