Yankee whalers of the 19th century had major impacts on populations of large whales, but these leviathans were not the only taxa targeted. Here, we describe the "collateral damage," the opportunistic or targeted taking of nongreat whale species by the American whaling industry. Using data from 5,064 records from 79 whaling logs occurring between 1840 and 1901, we show that Yankee whalers captured 5,255 animals across three large ocean basins from 32 different taxonomic categories, including a wide range of marine and terrestrial species. The taxa with the greatest number of individuals captured were walruses (), ducks (family Anatidae), and cod ( sp.). By biomass, the most captured species were walruses, grampus (a poorly defined group within Odontoceti), and seals (family Otariidae). The whalers captured over 2.4 million kg of nongreat whale meat equaling approximately 34 kg of meat per ship per day at sea. The species and areas targeted shifted over time in response to overexploitation of whale populations, with likely intensive local impacts on terrestrial species associated with multiyear whaling camps. Our results show that the ecosystem impacts of whaling reverberated on both marine and coastal environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108269PMC
http://dx.doi.org/10.1002/ece3.2542DOI Listing

Publication Analysis

Top Keywords

marine terrestrial
8
19th century
8
yankee whalers
8
nongreat whale
8
whalers captured
8
terrestrial species
8
whaling
5
species
5
collateral damage
4
damage marine
4

Similar Publications

The origin of complex life and the evolution of terrestrial ecosystems are fundamental aspects of the natural history on Earth. Here, we present evidence for a protracted stabilization of the Earth's ozone layer. The destruction of atmospheric ozone today is inherently linked to the cycling of marine and atmospheric iodine.

View Article and Find Full Text PDF

Characterizing biodiversity using environmental DNA (eDNA) represents a paradigm shift in our capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA biomonitoring is limited by biases toward certain species and the low taxonomic resolution of current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole ecosystem data by sequencing all molecules present, allowing characterization and identification.

View Article and Find Full Text PDF

Seagrass meadows are vital blue carbon habitats, with sedimentary organic carbon (OC) originating from both the seagrass itself and external sources. In this study, lipid biomarkers (n-alkanes), a well-known proxy for tracing OC sources, were used to indicate seagrass presence in sediment records and to correlate with sedimentary OC in cold-temperate seagrass (Zostera marina) sediments. We calculated a Zostera-ratio (seagrass/algae and terrestrial plants-ratio) using identified seagrass biomass n-alkanes (C, C, C, C, C) as a fingerprint for seagrass-derived OC.

View Article and Find Full Text PDF

Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening.

View Article and Find Full Text PDF

The community dynamic alterations mechanisms of traveling plastics in the Pearl River estuary with the salinity influence.

Water Res

December 2024

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!