The transport and magnetic properties of the tetragonal Fe[Formula: see text]S were investigated using magnetoresistivity and magnetization within [Formula: see text] K, [Formula: see text] 70 kOe and [Formula: see text] 3.0 GPa. In addition, room-temperature x-ray diffraction and photoelectron spectroscopy were also applied. In contrast to previously reported nonmetallic character, Fe[Formula: see text]S is intrinsically metallic but due to a presence of a weak localization such metallic character is not exhibited below room temperature. An applied pressure reduces strongly this additional resistive contribution and as such enhances the temperature range of the metallic character which, for ∼3 GPa, is evident down to 75 K. The absence of superconductivity as well as the mechanism behind the weak localization will be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099680 | PMC |
http://dx.doi.org/10.1088/1468-6996/15/5/055007 | DOI Listing |
J Am Chem Soc
January 2025
Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
The insulating transition metal nitride CaCrN consists of sheets of triangular [CrN] units with symmetry that are connected via quasi-1D zigzag chains. Due to strong covalency between Cr and N, Cr ions are unusually low-spin, and = 1/2. Magnetic susceptibility measurements reveal dominant quasi-1D spin correlations with very large nearest-neighbor antiferromagnetic exchange = 340 K and yet no sign of magnetic order down to = 0.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Handique Girls' College, Guwahati , 781001, Assam, India.
Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.
View Article and Find Full Text PDFDalton Trans
January 2025
The Department of Chemistry, Karadeniz Technical University, 61080, Trabzon, Turkey.
The utilisation of implantable medical devices has become safer and more prevalent since the establishment of sterilisation methods and techniques a century ago. Nevertheless, device-associated infections remain a significant and growing concern, particularly in light of the continued rise in the number of medical device implantations. This underscores the imperative for the development of efficacious prevention and treatment strategies for device-associated infections, as well as further investigation into the design of innovative antibacterial surfaces for medical device applications.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China. Electronic address:
Previous research on cadmium (Cd) focused on toxicity, neglecting hormesis and its mechanisms. In this study, pakchoi seedlings exposed to varying soil Cd concentrations (CK, 5, 10, 20, 40 mg/kg) showed an inverted U-shaped growth trend (hormesis characteristics): As Cd concentration increases, biomass exhibited hormesis character (Cd5) and then disappear (Cd40). ROS levels rose in both Cd treatments, with Cd5 being intermediate between CK and Cd40.
View Article and Find Full Text PDFMar Environ Res
January 2025
College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China. Electronic address:
Suaeda salsa, the dominant herbaceous plant in the high salinity areas of Asia, can even grow in the heavy metal polluted region. In order to illustrate the mechanisms of Cd (cadmium) tolerance in S. salsa, the accumulation, physiological and proteomic characters under two different concentrations of Cd exposure were investigated in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!