Helically assembled -conjugated polymers with circularly polarized luminescence.

Sci Technol Adv Mater

Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan.

Published: August 2014

We review the recent progress in the field of helically assembled -conjugated polymers, focusing on aromatic conjugated polymers with interchain helical -stacking that exhibit circularly polarized luminescence (CPL). In Part 1, we discuss optically active polymers with white-colored CPL and the amplification of the circular polarization through liquid crystallinity. In Part 2, we focus on the stimuli-responsive CPL that results from changes in the conformation and aggregation state of -conjugated molecules and polymers. In Part 3, we discuss the self-assembly of achiral cationic -conjugated polymers into circularly polarized luminescent supramolecular nanostructures with the aid of other chiral molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090686PMC
http://dx.doi.org/10.1088/1468-6996/15/4/044203DOI Listing

Publication Analysis

Top Keywords

-conjugated polymers
12
circularly polarized
12
helically assembled
8
assembled -conjugated
8
polymers circularly
8
polarized luminescence
8
polymers
6
-conjugated
4
luminescence review
4
review progress
4

Similar Publications

Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported.

View Article and Find Full Text PDF

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.

View Article and Find Full Text PDF

Controllable Self-Assembly Morphologies of PPV-Based Block Copolymers.

Chemistry

January 2025

Southern University of Science and Technology, Chemistry, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, CHINA.

Poly(p-phenylenevinylene) (PPV) is a classic semiconducting π-conjugated polymers with outstanding optical and electronic properties, which shows important applications in the fields of optoelectronic, such as organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs). In the working process of the device, the microstate of PPV decides its property. Therefore, it is significant to achieve ordered morphologies based on PPV at micro scale.

View Article and Find Full Text PDF

Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m g), and customizable porosity, making them ideal candidates for advanced hydrogen (H) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H as a clean energy carrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!