The discovery in 1987 of stable quasicrystals in the Al-Cu-Fe system was soon exploited to patent specific coatings that showed reduced friction in ambient air against hard antagonists. Henceforth, it was possible to develop a number of applications, potential or commercially exploited to date, that will be alluded to in this topical review. A deeper understanding of the characteristics of complex metallic alloys (CMAs) may explain why material made of metals like Al, Cu and Fe offers reduced friction; low solid-solid adhesion came later. It is linked to the surface energy being significantly lower on those materials, in which translational symmetry has become a weak property, that is determined by the depth of the pseudo-gap at the Fermi energy. As a result, friction is anisotropic in CMAs that builds up according to the translation symmetry along one direction, but is aperiodic along the other two directions. A review is given in this article of the most salient data found along these lines during the past two decades or so.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090520 | PMC |
http://dx.doi.org/10.1088/1468-6996/15/3/034804 | DOI Listing |
Macromol Rapid Commun
January 2025
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
Here, "direct click bonding" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
To tackle the formidable challenges posed by extreme cold weather events, significant advancements have been made in developing functional surfaces capable of efficiently removing accreted ice. Nevertheless, many of these surfaces still require external energy input, such as electrical power, which raises concerns regarding their alignment with global sustainability goals. Over the past decade, increasing attention has been directed toward photothermal surface designs that harness solar energy-a resource available on Earth in quantities exceeding the total reserves of coal and oil combined.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
The application of organic solid-liquid phase change materials (PCMs) is limited for the leakage problem after phase change and high rigidity. In this work, a novel flexible solid-solid PCM (DXPCM) was synthesized using a block copolymerization process with polyethylene glycol (PEG) as the energy storage segment. The phase transition temperature (from 36.
View Article and Find Full Text PDFSmall
December 2024
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Polymerizable deep eutectic solvents (PDESs) have emerged as promising building blocks for next-generation eutectic gels, offering new opportunities for the development of advanced electronic devices. Traditional PDES fabrication typically involves heating and extended processing time. In this study, a facile method where a solid-solid mixture of lithium bis(trifluoromethane) sulfonimide (LiTFSI) and acrylamide (AAm) rapidly forms a PDES at room temperature, significantly simplifying the ionogel preparation is presented.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
Phase-change materials (PCMs) stand a pivotal advancement in thermal energy storage and management due to their reversible phase transitions to store and release an abundance of heat energy. However, conventional solid-liquid PCMs suffer from fluidity and leakage in their molten state, limiting their applications at advanced levels. Herein, a novel Zn-crosslinked polyethylene glycol-co-polyphosphazene copolymer (PCEPN-Zn) as a solid-solid PCM through dynamic metal-ligand coordination is first designed and synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!