Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090412 | PMC |
http://dx.doi.org/10.1088/1468-6996/15/2/024802 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada. Electronic address:
d-ribose is a critical sugar substrate involved in the biosynthesis of nucleotides, amino acids, and cofactors, with its phosphorylation to ribose-5-phosphate by ribokinase (RK) constituting the initial step in its metabolism. RK is conserved across all domains of life, and its activity is significantly enhanced by monovalent metal (M) ions, particularly K, although the precise mechanism of this activation remains unclear. In this study, we present several crystal structures of human RK in both unliganded and substrate-bound states, offering detailed insights into its substrate binding process, reaction mechanism, and conformational changes throughout the catalytic cycle.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang, 110036, PR China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, PR Singapore. Electronic address:
Array-based analysis allows for precise disease diagnosis by simultaneously detecting multiple biomarkers. However, most array sensing platforms rely on non-covalent interactions between sensors and analytes, which limits their sensitivity. This study enhances the sensitivity of array analysis for thiol biomarkers by incorporating polyion complex micelles into the sensor array design.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan. Electronic address:
Anaerobic digestion (AD) offers great potential for pollutant removal and bioenergy recovery. However, it faces challenges when using livestock manure (LSM) as a feedstock given its high content of refractory materials (e.g.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China. Electronic address:
The interactions of nanoplastics (NPs) with natural organic matter (NOM) are influenced by their surface functional groups. In this study, the effects of representative functional groups on the interactions among polystyrene nanoplastics (PS-COOH and PS-NH), hydrophilic low molecular weight (LMW) substances (salicylic acid (SA), phthalic acid (PA), and gluconic acid (GA)), and a novel AlTi-based coagulant were investigated. We found that PS-NH (83.
View Article and Find Full Text PDFChem Asian J
January 2025
Universite de Rennes 1, Sciences Chimiques de Rennes - UMR 6226, Avenue du General Leclerc, Campus de Beaulieu, 35042, Rennes, FRANCE.
A novel coordination motif comprising [4]helicene fused with pyrazino-phenanthroline (H4PP) has been synthesized and reacted with ReCl(CO)5 to yield its rhenium(I) complex (Re-H4PP). Absorption and emission spectroscopic analysis conducted in dichloromethane and 2-methyltetrahydrofuran reveals that combining pyrazino-phenanthroline with helicene visibly affects the photophysical attributes of both the resulting ligand and its Re(I) complex as compared to their non-helicene analogues, and even more importantly leads to relatively high photoluminescence quantum yield values, especially in the case of H4PP (29%). Chiroptical studies through electronic circular dichroism and circularly polarized luminescence performed on enantiomerically enriched samples of Re-H4PP show the chiral nature of low-energy excited states affording notable glum values that amplify at cryogenic temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!