Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090555PMC
http://dx.doi.org/10.1088/1468-6996/13/4/043001DOI Listing

Publication Analysis

Top Keywords

extreme tribological
12
adaptive coatings
12
coatings
9
tribological applications
8
emergent behavior
8
wear resistance
8
physical chemical
8
natural processes
8
adaptive
7
hierarchical adaptive
4

Similar Publications

This paper presents the results of a study of layer gradient thermal protection coatings based on NiCrAlY and YSZ obtained by detonation spraying. Modern gas turbines and high-temperature units operate under extreme temperatures and aggressive environments, which requires effective protection of components from wear, corrosion, and thermal shocks. In this study, the use of layer gradient coatings consisting of alternating layers of NiCrAlY and YSZ was investigated with the aim of solving the problem of thermal stress accumulation due to a smooth change in the composition of the layers.

View Article and Find Full Text PDF

Fabrication of Vanadium Oxide-encapsulated Hybrid Carbon Nanospheres for Enhanced Tribological Performance.

Small

December 2024

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

A new sulfur-containing carbon nanospheres encapsulated with vanadium oxide (V@SCN) is synthesized through a one-pot oxidation polymerization and then carbonization method. The prepared V@SCNs exhibit good dispersibility as a lubricant additive, which is owing to the inherited lipophilic organic functional groups in the sulfur-containing carbon shell derived from the carbonization of polythiophene. The agglomeration and precipitation of metals in the base oil are also avoided through the encapsulation of lipophilic carbon shells.

View Article and Find Full Text PDF

Anti-wear and anti-oxidation abilities are two key properties of lubricants that play a crucial role in ensuring long-term stable equipment operation. In this study, we aimed to develop a base oil with good anti-oxidation and anti-wear properties for use under extreme pressure. The as-prepared metallocene polyalphaolefin (mPAO) was chemically modified using the trifluoromethanesulfonic acid (TfOH) catalysis through an alkylating reaction with triphenyl phosphorothioate (TPPT).

View Article and Find Full Text PDF

Surfaces are commonly enhanced with wear-resistant coatings to improve their resistance to abrasion, erosion, and other forms of wear. These coatings play a crucial role in extending the lifespan and improving the performance of materials and components exposed to challenging conditions. The objective of the current study is to deposit thermally sprayed 3-layer TiC-12Co-10ZrO/NiCoCrAlMo functionally graded coatings on SS410 substrates using atmospheric plasma spray.

View Article and Find Full Text PDF

Nanocellulose has emerged as a potential 'green' material owing to its inimitable properties. Furthermore, the significant development in technology has facilitated the design of multidimensional nanocellulose structures, including one-dimensional (1D: microparticles and nanofibers), two-dimensional (2D: coatings), and three-dimensional (3D: hydrogels/ferrogels) composites. In this case, nanocellulose composites blended with magnetic nanoparticles represent a new class of hybrid materials with improved biocompatibility and biodegradability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!