The strength of Mo nanorods was measured under uniaxial tension. Tensile tests of 〈 110〉-oriented single-crystalline molybdenum rod-shaped specimens with diameters from 25 to 90 nm at the apex were conducted inside a field-ion microscope (FIM). The nanocrystals were free from dislocations, planar defects and microcracks, and exhibited the plastic mode of failure under uniaxial tension with the formation of a chisel-edge tip by multiple gliding in the [Formula: see text] and [Formula: see text] deformation systems. The experimental values of tensile strength vary between 6.3 and 19.8 GPa and show a decrease with increasing nanorod diameter. A molecular dynamic simulation of Mo nanorod tension also suggests that the strength decreases from 28.8 to 21.0 GPa when the rod diameter increases from 3.1 to 15.7 nm. The maximum values of experimental strength are thought to correspond to the inherent strength of Mo nanocrystals under uniaxial tension (19.8 GPa, or 7.5% of Young's modulus).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090266 | PMC |
http://dx.doi.org/10.1088/1468-6996/10/4/045004 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA.
The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.
View Article and Find Full Text PDFGraphene aerogels with high surface areas, ultra-low densities, and thermal conductivities have been attracted a lot of attention in recent years. However, considerable difference in their deformation behavior and mechanical properties lead to their poor performance. The problem can be solved by preparing graphene aerogel of given morphology and by control the properties through the special structure of graphene cells.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.
The cervical spine ligaments, including the anterior longitudinal ligament (ALL) and posterior longitudinal ligament (PLL), play a key role in maintaining spinal stability by limiting excessive movements. This study investigates how ageing affects the mechanical properties of these ligaments. We analysed 33 samples from 12 human cervical spines (15 ALL, 18 PLL), averaging data from the same donors for independent analysis, resulting in 18 final samples (8 ALL, 10 PLL).
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Chair of Modelling in Engineering Sciences and Medicine, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva c. 6, 1000 Ljubljana, Slovenia.
The Lateral Collateral Ligament (LCL), one of the four major ligaments in the knee joint, resides on the outer aspect of the knee. It forms a vital connection between the femur and the fibula. The LCL's primary role is to provide stability against Varus forces, safeguarding the knee from undue rotation and tibial displacement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!