ROS-Responsive Mitochondria-Targeting Blended Nanoparticles: Chemo- and Photodynamic Synergistic Therapy for Lung Cancer with On-Demand Drug Release upon Irradiation with a Single Light Source.

Theranostics

Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai, Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;; National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Published: October 2017

Mitochondria in cancer cells maintain a more negative membrane potential than normal cells. Mitochondria are the primary source of cellular reactive oxygen species (ROS), which are necessary for photodynamic therapy. Thus, the strategy of targeting mitochondria can maximize the photodynamic therapeutic efficiency for cancer. Here we report, for the first time, synthesis of a new mitochondria-targeting drug delivery system, ZnPc/CPT-TPPNPs. To synthesize this novel compound, polyethylene glycol was functionalized with thioketal linker-modified camptothecin (TL-CPT) and triphenylphosphonium to form the block copolymer, TL-CPT-PEG-TPP. The ZnPc/CPT-TPPNPs was constructed for delivery of the photosensitizer Zinc phthalocyanine (ZnPc) by blending the block copolymer TL-CPT-PEG-TPP with 1, 2-distearoyl--glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)] (DSPE-PEG).Triphenylphosphine can accumulate selectively several hundred-fold within mitochondria. The thioketal linker is ROS-responsive and CPT can be released upon ROS cleavage. We also show that the ZnPc loaded in ZnPc/CPT-TPPNPs absorbed the 633 nm laser to produce ROS, which could be utilized both in photodynamic therapy and to cleave the thioketal linker thereby releasing camptothecin for chemotherapy. Thus, the mitochondria-targeting nanoparticles could elevate photodynamic therapeutic efficacy. Our results showed that surface modification of the nanoparticles with triphenylphosphine cations facilitated efficient subcellular delivery of the photosensitizer to mitochondria. The nanoparticles had a good ROS-responsive effect to release CPT, which could transfer to the nucleus and interfere with DNA replication as a topoisomeraseⅠinhibitor. Thus, the blended nanoparticles provide a new promising approach as a mitochondria-targeting ROS-activated chemo- and photodynamic therapy with a single light source for lung cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118600PMC
http://dx.doi.org/10.7150/thno.15433DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
blended nanoparticles
8
chemo- photodynamic
8
lung cancer
8
single light
8
light source
8
photodynamic therapeutic
8
block copolymer
8
copolymer tl-cpt-peg-tpp
8
delivery photosensitizer
8

Similar Publications

Photodynamic therapy of cancer-associated infections.

Photochem Photobiol

December 2024

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

Pathogens can be involved in tumor initiation, promotion, and progression through different mechanisms, and their treatment can prevent new cancer cases, improve outcomes, and revert poor-prognostic phenotypes. Photodynamic therapy (PDT) successfully treats different types of cancers and infections and, therefore, has a unique potential to address their combination. However, we believe this potential has been underutilized, and few researchers have investigated the impacts of PDT of both infection-related and cancer-related outcomes at once.

View Article and Find Full Text PDF

Background: Conventional photodynamic therapy (cPDT) is an effective treatment option for field cancerization and multiple actinic keratoses (AK). The main side effect of cPDT is pain during illumination which in severe cases might necessitate early termination of treatment. Modification of treatment parameters such as light dose and fluence rate is a promising approach to mitigate PDT-associated pain.

View Article and Find Full Text PDF

Ferroptosis: A novel cell death modality in or synergistic therapeutic strategy for photodynamic therapy.

Photodiagnosis Photodyn Ther

December 2024

Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China. Electronic address:

Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent ideal strategies for tumor treatment. Photodynamic therapy (PDT) is a localized and relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis.

View Article and Find Full Text PDF

Role of antimicrobial photodynamic therapy for the management of peri-implant diseases among habitual nicotinic product users: A systematic review.

Photodiagnosis Photodyn Ther

December 2024

Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Electronic address:

Objective: The objective was to systematically review original studies that assessed the influence of antimicrobial photodynamic therapy (aPDT) for managing peri-implant diseases among habitual nicotinic product (NP) users.

Methods: The research question was "Is aPDT effective for managing peri-implant diseases among NP users?" Indexed databases (PubMed/Medline, EMBASE, Scopus, and ISI Web of Knowledge) and Google Scholar were searched up to and including December 2024 without time and language barriers. Using Boolean operators, the following keywords were searched in different combinations: antimicrobial photodynamic therapy; crestal bone loss; peri-implant diseases; probing depth; nicotine; and smoking.

View Article and Find Full Text PDF

Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!