Porphyrin-phospholipid (PoP) liposomes can entrap anti-cancer agents and release them in response to near infrared (NIR) light. Doxorubicin, when remotely loaded via an ammonium sulfate gradient at a high drug-to-lipid ratio, formed elongated crystals that altered liposome morphology and could not be loaded into liposomes with higher PoP content. On the other hand, irinotecan could also be remotely loaded but did not form large crystals and did not induce liposome elongation. The loading, stability, and NIR light-triggered release of irinotecan in PoP liposomes was altered by the types of lipids used and the presence of PEGylation. Sphingomyelin, which has been explored previously for liposomal irinotecan, was found to produce liposomes with relatively improved serum stability and rapid NIR light-triggered drug release. PoP liposomes composed from sphingomyelin, cholesterol and 2 molar percent PoP rapidly released irinotecan in vivo in response to NIR irradiation as monitored by intravital microscopy and also induced effective tumor eradication in mice bearing MIA Paca-2 subcutaneous tumor xenografts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118598 | PMC |
http://dx.doi.org/10.7150/thno.15701 | DOI Listing |
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFMolecules
December 2024
Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai University", 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania.
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biomedical, Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFBrain Behav Immun
November 2024
Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA. Electronic address:
Amyloid-β (Aβ) and hyperphosphorylated tau protein are targets for Alzheimer's Disease (AD) immunotherapies, which are generally focused on single epitopes within Aβ or tau. However, due to the complexity of both Aβ and tau in AD pathogenesis, a multipronged approach simultaneously targeting multiple epitopes of both proteins could overcome limitations of monotherapies. Herein, we propose an active AD immunotherapy based on a nanoparticle vaccine comprising two Aβ peptides (1-14 and pyroglutamate pE3-14) and three tau peptides (centered on phosphorylated pT181, pT217 and pS396/404).
View Article and Find Full Text PDFVirology
September 2024
Department of Biochemistry and Molecular Biology, UTMB Galveston, 77555, USA; Institute for human infections and immunity, UTMB Galveston, 77555, USA. Electronic address:
Cobalt-porphyrin phospholipid displays recombinant protein antigens on liposome surfaces via antigen polyhistidine-tag (His-tag), and when combined with monophosphorylated lipid A and QS-21 yields the "CPQ" vaccine adjuvant system. In this proof of principle study, CPQ was used to generate vaccine prototypes that elicited antibodies for two different alphaviruses (AV). Mice were immunized with computationally designed, His-tagged, physicochemical property consensus (PCP) protein antigens representing the variable B-domain of the envelope protein 2 (E2) from the serotype specific Venezuelan Equine Encephalitis Virus (VEEV) or a broad-spectrum AV-antigen termed EVC The CPQ adjuvant enhanced the antigenicity of both proteins without eliciting detectable anti-His-tag antibodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!