Betulinic acid (BA), a naturally occurring pentacyclic lupane group triterpenoid, has been demonstrated to protect against ischemia/reperfusion-induced renal damage. However, the effects of BA on cerebral ischemia/reperfusion (I/R) injury remain unclear. Hence, this study was to investigate the effects of BA on oxygen and glucose deprivation/reperfusion (OGD/R) induced neuronal injury in rat hippocampal neurons. Our results showed that BA pretreatment greatly attenuated OGD/R-induced neuronal injury. BA also inhibited OGD/R-induced intracellular ROS production and MDA level in rat hippocampal neurons. Furthermore, the down-regulation of Bcl-2, up-regulation of Bax and the consequent activation of caspase-3 induced by OGD/R were reversed by BA pretreatment. Mechanistic studies demonstrated that BA pretreatment up-regulated the expression levels of p-PI3K and p-Akt in hippocampal neurons induced by OGD/R. Taken together, these data suggested that BA inhibits OGD/R-induced neuronal injury in rat hippocampal neurons through the activation of PI3K/Akt signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2016.11.028 | DOI Listing |
ACS Chem Neurosci
January 2025
Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.
View Article and Find Full Text PDFToxicology
January 2025
School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China. Electronic address:
Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!