Conditional knockout of TFPI-1 in VSMCs of mice accelerates atherosclerosis by enhancing AMOT/YAP pathway.

Int J Cardiol

Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China; Cardiovascular Center, Children's Hospital Affiliated to Fudan University, Shanghai 200032, China. Electronic address:

Published: February 2017

Background: Tissue factor pathway inhibitor-1 (TFPI-1) has multiple functions and its precise role and molecular mechanism during the development of atherosclerosis are not clear.

Objectives: To determine the effect and molecular mechanism of TFPI-1 deficiency in vascular smooth muscle cells (VSMCs) in atherosclerosis in the apolipoprotein E knockout (ApoE) mouse.

Methods And Results: A mouse model with a conditional knockout of TFPI-1 in VSMCs in an atherosclerosis-prone background (ApoE) was generated. Mice were fed a high fat diet for 18weeks and were then euthanized. Arterial trees and aortas were stained with Sudan IV and were labeled via immunohistochemistry. Cell proliferation and migration of VSMCs in atherosclerotic plaques were assessed. More atherosclerotic lesions and higher levels of proliferation and migration of VSMCs were observed in TFPI-1/Sma-CreApoEmice. An interaction between TFPI-1 and angiomotin (AMOT) was identified in human VSMCs by mass spectrometry, immunoprecipitation and co-localization analyses. Signal pathway changes were detected by Western blot analysis, and the expression levels of target genes were determined by real-time PCR. Decreased phosphorylation of AMOT and Yes-associated protein 1 (YAP) in TFPI-1/Sma-CreApoE mice resulted in increased expression levels of snail family zinc finger 2 (SLUG) and connective tissue growth factor (CTGF), which are target genes of the Hippo signaling pathway that have been verified as atherosclerosis candidate genes.

Conclusion: Deficiency in TFPI-1 in the VSMCs of ApoE mice accelerated the development of atherosclerosis by promoting the proliferation and migration of VSMCs which may be caused by the decreased phosphorylation of AMOT and YAP.

Significance: TFPI-1 has been found to has an anticoagulant activity, induce cell apoptosis and prevent cell proliferation. For the first time, we constructed a line of conditional knockout mice in which the TPFI-1 gene is deleted in VSMCs. We found that TFPI-1 deficiency clearly promoted the development of atherosclerosis when these mice were crossed into an ApoEbackground. One notable feature of atherosclerosis is the proliferation and migration of smooth muscle cells. Previous reports involved TFPI-1 do not completely explain the proliferation and migration of VSMCs because heterozygous TF deficient (TF) mice bred in an ApoE background did not show diminished atherosclerosis compared to TF mice bred in the same background. Our results first confirmed that TFPI-1 interacts with AMOT, which led to a decrease in the phosphorylation of YAP and further increased the genes expression of the proliferation and migration involved. Our results further confirmed that atherosclerosis was a localized disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2016.11.195DOI Listing

Publication Analysis

Top Keywords

proliferation migration
24
migration vsmcs
16
conditional knockout
12
tfpi-1 vsmcs
12
development atherosclerosis
12
tfpi-1
10
vsmcs
10
atherosclerosis
9
knockout tfpi-1
8
mice
8

Similar Publications

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells.

Eur J Pharmacol

January 2025

School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:

Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!