Effects of moderate (42 degrees C, 1 hour) and strong (44 degrees C, 1 hour) heat shocks on resting (TR) and phytohemagglutinin stimulated human T-cells (TP) were studied. Both treatments were shown to cause in the latter considerable fall of the level of protein synthesis, as compared to resting cells. Mitogen-stimulated cells stopped their proliferation irreversibly and part of them (approx: 40%) died after even mild shock (at 42 degrees C). Following heat treatment in both the cell types the synthesis of heat shock 70 and 90 kDa proteins was induced which was much more pronounced in TR. These and earlier results of the authors allow a conclusion that involvement of cells in active proliferation may decrease their resistance to stress, and that this phenomenon coincides with the diminishing in synthesis and accumulation of stress proteins.
Download full-text PDF |
Source |
---|
J Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
Sci Rep
January 2025
Division of Genetics, Indian Agricultural Research Institute, New Delhi, India.
With climate change projections indicating an increase in the frequency of extreme heat events and irregular rainfall patterns globally, the threat to global food security looms large. Terminal heat stress, which occurs during the critical reproductive stage, significantly limits lentil productivity. Therefore, there is an urgent need to improve lentil's resilience to heat stress to sustain production.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
The heat shock protein 90 (Hsp90) family of molecular chaperones mediates the folding and activation of ~ 400 client proteins, many of which contribute to oncogenesis. As a result, Hsp90 pan-inhibitors, which inhibit all four Hsp90 isoforms, have been investigated in the clinic for the treatment of cancer. Unfortunately, detrimental side effects were observed and hindered the clinical development of pan-Hsp90 inhibitors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892.
Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!