Vascular dementia is a neurodegenerative disorder caused by the reduction of cerebral blood flow. It shows a progressive cognitive impairment. In our previous study, we found that etidronate (ET) showed neuroprotective effects against glutamate-injured PC12 cells. Thus, in this study, we aimed to observe the effects of ET on learning and memory impairment and the related mechanism in 2-vessel occlusion (2VO) model rats. Rats were administered a permanent bilateral common carotid artery occlusion to induce vascular dementia model. Two weeks later, 2VO model rats were treated with ET (20 mg/kg/day i.p.) for 1 week. Results showed that ET improved the spatial learning and memory function in 2VO rats detected by Morris water maze experiment. A reduced long-term potentiation was also rescued by ET treatment in 2VO rats. Moreover, the long-term potentiation-related proteins, calcium/calmodulin-dependent protein kinase II (CaMKII), NMDAR 2B and PSD95 were up-regulated after treatment with ET. By testing the levels of malondialdehyde and superoxide dismutase in 2VO rats, we discovered that ET lowered oxidative stress. Furthermore, ET displayed a better anti-apoptosis ability through detecting the levels of Bcl-2 and Bax protein and terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells. In conclusion, ET shows neuroprotective effects on 2VO rats through rescuing spatial working memory deficits, and a possible mechanism may be related to the increased synaptic transmission and the inhibition of oxidative stress and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.13904 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!