The purpose of this study was to develop a methodology to accurately analyze sprint performance of elite wheelchair basketball (WB) players in their own training context using a laser system and to analyze the velocity curve performed by the players regarding their functional classification and their playing position. Twelve WB players, from the Spanish men's national team, took part in an oncourt 20-m-sprint test. BioLaserSport® was used to obtain time, mean velocities (Vm), maximum velocities (Vmax), and distances at 90%, 95%, and 98% of their Vmax. Vm and Vmax reached high values in Classes II and III and in the guard playing position. The protocol developed with the laser system makes it possible to obtain a precise velocity curve in short sprints and allows easy analysis of decisive kinematic performance variables in WB players, showing immediate feedback to coaches and players. The normalized data allow an interpretation of how much, where, and when Vmax occurs along the test.

Download full-text PDF

Source
http://dx.doi.org/10.1123/APAQ.2015-0067DOI Listing

Publication Analysis

Top Keywords

laser system
12
velocity curve
12
sprint performance
8
performance elite
8
elite wheelchair
8
wheelchair basketball
8
basketball players
8
playing position
8
players
6
players applicability
4

Similar Publications

Rationally manipulating molecular planarity to improve molar absorptivity, NIR-II brightness, and photothermal effect for tumor phototheranostics.

Biomaterials

January 2025

Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China. Electronic address:

The secondary near-infrared region (NIR-II) fluorescence imaging-guided photothermal therapy (PTT) offers a noninvasive and light-controllable treatment option for deep-seated cancers. However, the development of NIR-II photothermal agents (NIR-II PTAs) that possess the desired properties of high molar absorption coefficient (ε), fluorescence quantum yield (QY), and photothermal conversion efficiency (PCE) remain a challenge due to the contradiction between radiative and nonradiative processes. Herein, we propose a novel side-chain heteroatom substitution engineering strategy to simultaneously enhance ε, QY, and PCE by modifying the molecular planarity.

View Article and Find Full Text PDF

Economic impact of initial glaucoma treatment with selective laser trabeculoplasty on the Brazilian Public Health System.

Arq Bras Oftalmol

January 2025

Discipline of Health Management and Economics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

Purpose: To evaluate the economic impact of the following initial treatment scenarios for glaucoma on the Brazilian Public Health System (SUS): (1) traditional continuous instillation of hypotensive eye drops and (2) single session of selective laser trabeculoplasty.

Methods: Economic impact was analyzed in three scenarios, from the least to the most conservative, for a hypothetical cohort of 5,000 individuals with open-angle glaucoma. Thereafter, projections were made on the basis of a glaucoma prevalence of 3% in the 2021 Brazilian population size.

View Article and Find Full Text PDF

Deep-ultraviolet (DUV) light is essential for applications including fabrication, molecular research, and biomedical imaging. Compact metalenses have the potential to drive further innovation in these fields, provided they utilize a material platform that is cost-effective, durable, and scalable. In this work, we present aluminum nitride (AlN) metalenses as an efficient solution for DUV applications.

View Article and Find Full Text PDF

Massively parallel Hong-Ou-Mandel interference based on independent soliton microcombs.

Sci Adv

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.

View Article and Find Full Text PDF

Extended Time-Dependent Density Functional Theory for Multibody Densities.

Phys Rev Lett

December 2024

Key Laboratory for Laser Plasmas and School of Physics and Astronomy, and Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.

Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, Van Leeuwen theorem [Phys. Rev.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!