Green synthesized nanoparticles have gained great attention due to their non-toxic and non-hazardous nature. In the present study, bark extract of the medicinal plant in Ayurveda Crataeva nurvala (Buch-Ham) (CN) was chosen for the biosynthesis of silver nanoparticles (AgNPs). These NPs were characterized by Ultra violet visible spectroscopy, Fourier Transform Infra Red, Atomic Force Microscopy, and Transmission Electron Microscopy (TEM). The average particle size of green synthesized CN-AgNPs was 15.2 ± 1.01 nm. Gas chromatography- mass spectrometry analysis of methanolic bark extract involved in the formation of CN-AgNPs revealed lupeol as a major active component. In this study, CN-AgNPs (15 μg ml ) efficiently suppressed the production of quorum sensing mediated virulence factors viz. pyocyanin, protease, hemolysin, and biofilm formation in Pseudomonas aeruginosa. The pyocyanin production was strongly inhibited (74.64%) followed by proteolysis (47.3%) and hemolysin production (47.7%). However, the biofilm forming ability was maximally reduced up to 79.70%. Moreover, the Confocal Laser Scanning Microscopic Analysis showed that CN-AgNPs inhibit colonization of P. aeruginosa on to the surface. Furthermore, TEM analysis revealed internalization of CN-AgNPs inside the bacterial cell. It is concluded that green synthesized AgNPs have great potential to inhibit virulence factors and biofilm forming ability of drug-resistant clinical isolates of P. aeruginosa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.201600175 | DOI Listing |
Future Microbiol
January 2025
Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA.
Aim: Chronic wound infections present a prevalent medical issue and a multifaceted problem that significantly impacts healthcare systems worldwide. Biofilms formed by pathogenic bacteria are fundamental virulence factors implicated in the complexity and persistence of bacterial-associated wound infections, leading to prolonged recovery times and increased risk of infection. This study aims to investigate the antibacterial effectiveness of commonly employed bioactive wound healing compositions with a particular emphasis on their effectiveness against common bacterial pathogens encountered in chronic wounds - , , and to identify optimal wound product composition for managing chronic wound infections.
View Article and Find Full Text PDFJ Inflamm (Lond)
January 2025
Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).
View Article and Find Full Text PDFBMC Microbiol
January 2025
The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
The emergence and prevalence of hypervirulent Klebsiella pneumoniae (hvKP) have proposed a great challenge to control this infection. Therefore, exploring some new drugs or strategies for treating hvKP infection is an urgent issue for scientific researchers. In the present study, the clpV gene deletion strain of hvKP (ΔclpV-hvKP) was constructed using CRISPR-Cas9 technology, and the biological characteristics of ΔclpV-hvKP were investigated to explore the new targets for controlling this pathogen.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Bacterial transcription activator-like effectors (TALEs) promote pathogenicity by activating host susceptibility (S) genes. To understand the pathogenicity and host adaptation of Xanthomonas citri pv. malvacearum (Xcm), we assemble the genome and the TALE repertoire of three recent Xcm Texas isolates.
View Article and Find Full Text PDFJ Infect Public Health
December 2024
Department of Nosocomial Infection Control, The Clinical Laboratory, Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:
Background: The investigation into risk factors, molecular epidemiology, and resistance mechanisms of carbapenem-resistant Pseudomonas aeruginosa (CRPA) in pediatric populations in China is currently inadequate.
Methods: To assess epidemiology, molecular characteristics, and resistance mechanisms, virulence-associated genes were analyzed, alongside multi locus sequence typing (MLST), PCR, and qRT-PCR.
Finding: Multivariate analysis identified prolonged hospitalization (OR: 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!