Molecular thermodynamics of metabolism: hydration quantities and the equation-of-state approach.

Phys Chem Chem Phys

Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland. and Swiss Institute of Bioinformatics (SIB), CH-1015, Switzerland.

Published: November 2016

The present work is part of a series of papers aiming at a thorough understanding of the thermodynamics of metabolism over a broad range of external conditions. The focus here is on the systematic study of solvation/hydration of a variety of fluids via an equation-of-state approach. This approach permits the study not only of the overall free energy, enthalpy or entropy of hydration but also their key components from cavitation, charging, and solute conformations/solvent restructuring contributions. These latter components shed light into the mechanism of hydration and contribute to our understanding of solvation phenomena at remote conditions of temperature and pressure. Hydrogen bonding is of central importance in this respect and is handled via the partial solvation parameter (PSP) approach. The developed solvation model is used for the estimation of the hydration quantities of key metabolites. The challenges and perspectives of this equation-of-state approach are critically discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp06281dDOI Listing

Publication Analysis

Top Keywords

equation-of-state approach
12
thermodynamics metabolism
8
hydration quantities
8
approach
5
molecular thermodynamics
4
hydration
4
metabolism hydration
4
quantities equation-of-state
4
approach work
4
work series
4

Similar Publications

The density (ρ), speed of sound (), and refractive index ( ) of ,-dimethylacetamide (DMA) with 1-butanol, 1-pentanol, furfural (FFL), or furfuryl alcohol (FA) as a function of composition and at = 293.15 to 323.15 K with an interval of 10 K and atmospheric pressure were measured.

View Article and Find Full Text PDF

Process-based screening of porous materials for vacuum swing adsorption based on 1D classical density functional theory and PC-SAFT.

Mol Syst Des Eng

January 2025

Energy & Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich Zurich Switzerland

Adsorption-based processes are showing substantial potential for carbon capture. Due to the vast space of potential solid adsorbents and their influence on the process performance, the choice of the material is not trivial but requires systematic approaches. In particular, the material choice should be based on the performance of the resulting process.

View Article and Find Full Text PDF

How condensed-matter simulations depend on the number of molecules being simulated (N) is sometimes itself a valuable piece of information. Liquid crystals provide a case in point. Light scattering and 2d-IR experiments on isotropic-phase samples display increasingly large orientational fluctuations ("pseudo-nematic domains") as the samples approach their nematic phase.

View Article and Find Full Text PDF

In the present study, the solubility of sulfasalazine in carbon dioxide was investigated at temperatures ranging from 313 K to 343 K and pressures ranging from 12 to 30 MPa. The experimentally determined molar solubilities of sulfasalazine in ScCO were found to be in the range of 4.08 × 10 to 8.

View Article and Find Full Text PDF

Equations of State model relations between thermodynamic variables and are ubiquitous in scientific modelling, appearing in modern day applications ranging from Astrophysics to Climate Science. The three desired properties of a general Equation of State model are adherence to the Laws of Thermodynamics, incorporation of phase transitions, and multiscale accuracy. Analytic models that adhere to all three are hard to develop and cumbersome to work with, often resulting in sacrificing one of these elements for the sake of efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!