Evolutionary rescue of bacteria via horizontal gene transfer under a lethal β-lactam concentration.

J Glob Antimicrob Resist

Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, Survontie 9 (Ambiotica), Jyväskylä 40014, Finland. Electronic address:

Published: September 2014

β-Lactams are a commonly used class of bactericidal antibiotics. The number of β-lactam-resistant pathogens is constantly increasing in hospitals around the world. Interestingly, most of the β-lactam-resistant bacteria carry mobile genetic elements, such as conjugative plasmids, that render the pathogen resistant. These elements mediate their own transfer from one bacterium to another, producing new resistant strains via horizontal gene transfer. Here we investigated whether it is possible that transfer of the resistance element from another bacterium may evolutionarily rescue a susceptible bacterium exposed to a lethal concentration of the β-lactam ampicillin. Indeed, the rescuing occurs even at very high, clinically significant antibiotic levels, suggesting that pathogens may acquire the resistance 'on the fly' from commensal bacteria during treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgar.2014.02.005DOI Listing

Publication Analysis

Top Keywords

horizontal gene
8
gene transfer
8
evolutionary rescue
4
rescue bacteria
4
bacteria horizontal
4
transfer
4
transfer lethal
4
lethal β-lactam
4
β-lactam concentration
4
concentration β-lactams
4

Similar Publications

Antibiotic resistance mediated by gene amplifications.

NPJ Antimicrob Resist

November 2024

Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Apart from horizontal gene transfer and sequence-altering mutational events, antibiotic resistance can emerge due to the formation of tandem repeats of genomic regions. This phenomenon, also known as gene amplification, has been implicated in antibiotic resistance in both laboratory and clinical scenarios, where the evolution of resistance via amplifications can affect treatment efficacy. Antibiotic resistance mediated by gene amplifications is unstable and consequently can be difficult to detect, due to amplification loss in the absence of the selective pressure of the antibiotic.

View Article and Find Full Text PDF

Cutting-edge tools for unveiling the dynamics of plasmid-host interactions.

Trends Microbiol

January 2025

Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, UK. Electronic address:

The plasmid-mediated transfer of antibiotic resistance genes (ARGs) in complex microbiomes presents a significant global health challenge. This review examines recent technological advancements that have enabled us to move beyond the limitations of culture-dependent detection of conjugation and have enhanced our ability to track and understand the movement of ARGs in real-world scenarios. We critically assess the applications of single-cell sequencing, fluorescence-based techniques and advanced high-throughput chromatin conformation capture (Hi-C) approaches in elucidating plasmid-host interactions at unprecedented resolution.

View Article and Find Full Text PDF

Structure and Function Analysis of Microcystin Transport Protein MlrD.

Biochimie

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:

Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.

View Article and Find Full Text PDF

Antigen 43 associated with membrane vesicles contributes to bacterial cell association and biofilm formation.

Microbiol Spectr

January 2025

Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia.

Bacterial membrane vesicles (MVs) are produced by all bacteria and contribute to numerous bacterial functions due to their ability to package and transfer bacterial cargo. In doing so, MVs have been shown to facilitate horizontal gene transfer, mediate antimicrobial activity, and promote biofilm formation. Uropathogenic is a pathogenic Gram-negative organism that persists in the urinary tract of its host due to its ability to form persistent, antibiotic-resistant biofilms.

View Article and Find Full Text PDF

The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!