Mycobacteria form lipid-rich biofilms that restrict the efficacy of antimicrobial chemotherapy, possibly necessitating the use of lipophilic antibiotics. In the current study, the activity of one such agent, clofazimine, against Mycobacterium tuberculosis and Mycobacterium smegmatis planktonic cells and biofilms was investigated. Minimum inhibitory concentrations (MICs) of clofazimine were determined for planktonic cultures, whilst minimum bactericidal concentrations (MBCs) were determined for planktonic, biofilm-producing and biofilm-encased organisms using standard bacteriological procedures. The effects of clofazimine on biofilm formation and the stability of pre-formed biofilm were measured using a crystal violet-based spectrophotometric procedure. In the case of M. smegmatis, clofazimine was found to be active against planktonic phase (MICs and MBCs of 2.5mg/L and >20mg/L, respectively) and biofilm-producing organisms (MBC of 2.5mg/L); clofazimine demonstrated greater activity against M. tuberculosis, corresponding values of 0.06, 5 and 0.3mg/L. Although clofazimine inhibited biofilm production both by M. tuberculosis and M. smegmatis (P<0.05 at ≥0.07mg/L and ≥0.3mg/L, respectively) and appeared to reduce the pre-formed M. tuberculosis biofilm, addition of antimicrobial agent to pre-existing biofilm matrices failed to kill biofilm-encased organisms. In conclusion, clofazimine is more effective against M. tuberculosis than against M. smegmatis, exhibiting bactericidal activity both for actively growing and slowly replicating bacilli but not for non-replicating organisms of both species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgar.2014.12.001 | DOI Listing |
Pharmaceutics
December 2024
University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
Background/objectives: Clofazimine (CFZ) is a Biopharmaceutics Classification System (BCS) II drug introduced in the US market in 1986 for the treatment of leprosy. However, CFZ was later withdrawn from the market due to its extremely low aqueous solubility and low absorption. In the literature, the intrinsic solubility of CFZ has been estimated to be <0.
View Article and Find Full Text PDFCureus
November 2024
Dermatology, The Oxford Medical College, Hospital, and Research Centre, Bangalore, IND.
Leprosy is a chronic, infectious, and debilitating disorder that primarily affects the skin and peripheral nerves. The disease course may be complicated by immune-mediated reactions during or after therapy, which may further worsen nerve damage. Type II lepra reaction (T2LR) is a painful inflammatory condition with systemic features, such as fever, tender erythematous nodules, arthritis, neuritis, orchitis, lymphadenitis, and iritis.
View Article and Find Full Text PDFJ Med Case Rep
December 2024
Division of Infectious Diseases, Denver Health Medical Center, Denver, CO, USA.
Background: Leprosy (Hansen's disease) is an infectious disease most common in resource-limited countries caused by the acid-fast bacilli Mycobacterium leprae and Mycobacterium lepromatosis that frequently affects the skin and peripheral nerves. Prompt diagnosis and treatment with multidrug therapy is crucial to reduce disease transmission and sequelae, which include nerve function impairment, ocular injury, and stigmatizing physical deformities. Traditional treatment of multibacillary leprosy consists of 12-24 months of multidrug therapy with dapsone, rifampin, and clofazimine.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China.
Given the intrinsic resistance of to a wide range of conventional antibiotics, it is urgent to explore new therapeutic approaches to manage this infection effectively. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a proton pump inhibitor, has shown good bacteriostatic activity against . This study aimed to determine its synergistic antimicrobial effects when combined with commonly used antibiotics.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.
, a leading non-tuberculous mycobacterium (NTM) pathogen, causes chronic pulmonary infections, particularly in individuals with underlying lung conditions or immunosuppression. Current treatments involve prolonged multi-drug regimens with poor outcomes and significant side effects, highlighting the urgent need for improved therapies. Using a BALB/c mouse model of chronic pulmonary disease, we evaluated the efficacy of individual antibiotics-clarithromycin, clofazimine, and rifabutin-and combination regimens including clarithromycin+bedaquiline and clarithromycin+clofazimine+bedaquiline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!