Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high-octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid-derived methylsuccinic monoester yields a chiral 2,5-dimethyladipic acid diester, another underutilized monomer owing to lack of availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324636 | PMC |
http://dx.doi.org/10.1002/cssc.201601271 | DOI Listing |
Adv Mater
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.
The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.
Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.
View Article and Find Full Text PDFSmall
December 2024
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Street, Pedion Areos, 38834, Greece.
Developing highly efficient biomass-derived carbon-based electrocatalysts remains challenging for urea electrolysis because most of these electrocatalysts show powder morphology, which can lead to Ostwald ripening during the reaction process, and its reaction mechanism should be further verified. Herein, self-supported lignin-derived carbon coupling NiO@MoNi heterojunction (NiO@MoNi/C) possesses superhydrophilic properties and electronic modulation, boosting the performance of urea electrolysis. Electrochemical results show that an indirect oxidation step for urea oxidation reaction (UOR) and Volmer-Heyrovsky mechanism for hydrogen evolution reaction (HER) occurs on the surface of NiO@MoNi/C.
View Article and Find Full Text PDFACS Catal
November 2024
Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
The faradaic efficiency (FE) of the electrochemical hydrogenation (ECH) of phenol and other biomass-derived model compounds could potentially be improved by operating in alkaline electrolytes, where the parasitic hydrogen evolution reaction rate is significantly slower due to a higher Volmer step barrier. However, this approach is potentially limited by the impact of the higher barrier for adsorbed hydrogen (H) formation, as hydrocarbon ECH is expected to be limited by a hydrogen atom transfer, progressing through a Langmuir-Hinshelwood-type (LH) mechanism. In this work, we show that there are contrasting pH trends for phenol ECH between Pt and Rh, two common catalysts for ECH reactions.
View Article and Find Full Text PDFMater Horiz
November 2024
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!