Design and characterisation of synthetic operons for biohydrogen technology.

Arch Microbiol

Division of Molecular Microbiology, School of Life Sciences, University of Dundee, MSI/WTB/JBC/DCTIR Research Complex, Dow Street, Dundee, DD1 5EH, Scotland, UK.

Published: April 2017

Biohydrogen is produced by a number of microbial systems and the commonly used host bacterium Escherichia coli naturally produces hydrogen under fermentation conditions. One approach to engineering additional hydrogen production pathways is to introduce non-native hydrogenases into E. coli. An attractive candidate is the soluble [NiFe]-hydrogenase from Ralstonia eutropha, which has been shown to link NADH/NAD biochemistry directly to hydrogen metabolism, an activity that E. coli does not perform. In this work, three synthetic operons were designed that code for the soluble hydrogenase and two different enzyme maturase systems. Interestingly, using this system, the recombinant soluble hydrogenase was found to be assembled by the native E. coli [NiFe]-hydrogenase assembly machinery, and, vice versa, the synthetic maturase operons were able to complement E. coli mutants defective in hydrogenase biosynthesis. The heterologously expressed soluble hydrogenase was found to be active and was shown to produce biohydrogen in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350229PMC
http://dx.doi.org/10.1007/s00203-016-1322-5DOI Listing

Publication Analysis

Top Keywords

soluble hydrogenase
12
synthetic operons
8
coli
5
design characterisation
4
characterisation synthetic
4
operons biohydrogen
4
biohydrogen technology
4
technology biohydrogen
4
biohydrogen produced
4
produced number
4

Similar Publications

The energy metabolism of in different trophic conditions.

Appl Environ Microbiol

October 2024

School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.

The "knallgas" bacterium is attracting interest due to its extremely versatile metabolism. can use hydrogen or formic acid as an energy source, fixes CO the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases).

View Article and Find Full Text PDF

The NAD-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE.

View Article and Find Full Text PDF

Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H-driven regeneration of the OYE cofactor FMNH.

View Article and Find Full Text PDF

Molecular hydrogen (H) is crucial for agricultural microbial systems. However, the mechanisms underlying its influence on crop yields is yet to be fully elucidated. This study observed that H-based irrigation significantly increased strawberry ( × Duch.

View Article and Find Full Text PDF

Enhancing tomato fruit antioxidant potential through hydrogen nanobubble irrigation.

Hortic Res

June 2024

State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, China.

Eating fruits and vegetables loaded with natural antioxidants can boost human health considerably and help fight off diseases linked to oxidative stress. Hydrogen has unique antioxidant effects. However, its low-solubility and fast-diffusion has limited its applications in agriculture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!