Objective: We describe 2 additional patients with early-onset epilepsy with a de novo mutation.
Methods: Whole-exome sequencing was performed in 2 unrelated patients with early-onset epilepsy and their unaffected parents. Genetic variants were assessed by comparative trio analysis. Clinical evolution, EEG, and neuroimaging are described. The phenotype and response to treatment was reviewed and compared to affected siblings in the original report.
Results: We identified the same de novo mutation reported previously (c.G155A, p.R52H) in 2 additional patients with early-onset epilepsy. Similar to the original brothers described, both presented with tonic seizures in the first month of life. In the first patient, seizures responded to sodium channel blockers and her development was normal at 11 months. Patient 2 is a 15-year-old girl with treatment-resistant focal epilepsy, moderate intellectual disability, and autism. Carbamazepine (sodium channel blocker) was tried later in her course but not continued due to an allergic reaction.
Conclusions: The identification of a recurrent de novo mutation in 2 additional unrelated probands with early-onset epilepsy supports the role of p.R52H in disease pathogenesis. Affected carriers presented with similar early clinical phenotypes; however, this report expands the phenotype associated with this mutation which contrasts with the progressive course and early mortality of the siblings in the original report.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113095 | PMC |
http://dx.doi.org/10.1212/NXG.0000000000000120 | DOI Listing |
Mol Genet Genomic Med
January 2025
Department of Pediatrics, Taihe County People's Hospital, Fuyang, Anhui, China.
Background: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFTransplant Proc
January 2025
Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Pittsburgh Medical Center (UPMC), Palermo, Italy.
Background: After encephalopathy, epileptic seizures (ES) are the second most common neurologic complication after orthotopic liver transplantation (OLT) and may announce a disabling/fatal neurologic disease.
Methods: In this retrospective study, we collected clinical information from patients who underwent OLT at our institution and analyzed outcomes and potential risk factors for developing ES after OLT.
Results: Fourteen of our 376 patients (3.
Neurogenetics
January 2025
Department of Neuroscience and Behavioural Sciences, School of Medicine at Ribeirão Preto, University of São Paulo, Bandeirantes Av. 3900, Ribeirão Preto, São Paulo, 14040-900, Brazil.
Neuronal Ceroid Lipofuscinosis 11 (CLN11) is an ultra-rare subtype of adult-onset Neuronal Ceroid Lipofuscinosis. Its phenotype is variable and not fully known. A 21-year-old man was evaluated in our neurogenetic outpatient clinic for early onset complex phenotype, including learning difficulties, cerebellar ataxia, cone-rod dystrophy, epilepsy, and dystonia.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark.
Objectives: Developmental and epileptic encephalopathies (DEEs) caused by pathogenic variants in SCN8A are associated with difficult-to-treat and early-onset seizures, developmental delay/intellectual disability, impaired quality of life, and increased risk of early mortality. High doses of sodium channel blockers are typically used to treat SCN8A-DEE caused by gain-of-function (GoF) variants. However, seizures are often drug resistant, and only a few patients achieve seizure freedom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!