The protozoan parasite causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by trypomastigotes is crucial in host-pathogen interactions. In this study, mammalian tissue culture-derived trypomastigotes (Y strain) were used to characterize the exoproteome of the infective bloodstream life form. Proteins released into the serum-free culture medium after 3 h of incubation were harvested and digested with trypsin. NanoLC-MS/MS analysis resulted in the identification of 540 proteins, the largest set of released proteins identified to date in spp. Bioinformatic analysis predicted most identified proteins as secreted, predominantly by non-classical pathways, and involved in host-cell infection. Some proteins possess predicted GPI-anchor signals, these being mostly trans-sialidases, mucin associated surface proteins and surface glycoproteins. Moreover, we enriched phosphopeptides and glycopeptides from tryptic digests. The majority of identified glycoproteins are trans-sialidases and surface glycoproteins involved in host-parasite interaction. Conversely, most identified phosphoproteins have no Gene Ontology classification. The existence of various proteins related to similar functions in the exoproteome likely reflects this parasite's enhanced mechanisms for adhesion, invasion, and internalization of different host-cell types, and escape from immune defenses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097913 | PMC |
http://dx.doi.org/10.3389/fchem.2016.00042 | DOI Listing |
J Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Cell Biology, Physiology, and Immunology, University of Córdoba, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFNat Commun
January 2025
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. With cryo-electron microscopy (cryo-EM) we reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å, which points to structural diversity among TARPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!