Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pelagic dispersal of most benthic marine organisms is a fundamental driver of population distribution and persistence and is thought to lead to highly mixed populations. However, the mechanisms driving dispersal pathways of larvae along open coastlines are largely unknown. To examine the degree to which early stages can remain spatially coherent during dispersal, we measured genetic relatedness within a large pulse of newly recruited splitnose rockfish (Sebastes diploproa), a live-bearing fish whose offspring settle along the US Pacific Northwest coast after spending up to a year in the pelagic environment. A total of 11.6% of the recruits in a single recruitment pulse were siblings, providing the first evidence for persistent aggregation throughout a long dispersal period. Such protracted aggregation has profound implications for our understanding of larval dispersal, population connectivity, and gene flow within demersal marine populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5150399 | PMC |
http://dx.doi.org/10.1073/pnas.1613440113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!